Project/Area Number |
19K14544
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Shinshu University (2020-2022) Institute of Physical and Chemical Research (2019) |
Principal Investigator |
Kubota Yosuke 信州大学, 学術研究院理学系, 講師 (30804075)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 非可換幾何学 / 高階指数理論 / トポロジカル相 / 作用素環論 / 指数理論 / 非可換幾何 / 作用素環 / K理論 / 正スカラー曲率計量 / トポロジカル絶縁体 / KK理論 |
Outline of Research at the Start |
指数理論とはAtiyah-Singerの指数定理に始まる一連の研究を指す.本研究では,その中でもC*-環を中心的に用いる抽象理論(非可換幾何学)を用いて幾何学や物理学の問題に挑戦し,従来当該分野で考えられていたものとは異なる視点を導入することで問題解決することを目標としている.より具体的には,特異性のある多様体の正スカラー曲率計量の存在問題,強欠陥系のトポロジカル相とバルク・境界対応,散乱理論を用いた非コンパクト多様体の指数理論などを考えている.
|
Outline of Final Research Achievements |
The main result of this research is an observation about the behavior of operators in higher index theory and some consequences obtained by applying it. The basic observation is a that operators with finite propagation on a metric space of a certain shape naturally lift to their covering space. It answers to several questions that has been asked in higher index theory, more specifically (1) index theory of codimensional 2 submanifolds, (2) obstractions to PSC metrics due to the infinite KO-bandwidth, and (3) a mathematical proof of the bulk-dislocation correspondence in 3-dimensional topological matter with a screw dislocation.
|
Academic Significance and Societal Importance of the Research Achievements |
高階指数理論は,作用素のなす空間のトポロジーを扱う抽象理論で,これまでに高度に非自明な理論的枠組を構築することに成功している.一方それに比べると,その抽象論がどのような問題に適用されうるかについての知見はまだ不足している.本研究では,分野が培ってきた理論がどのようなことを証明する能力を持っているかについて,具体的な事例の研究をもって理解を推し進めることができた.このような方向性の研究は,分野の知見を数学全体の中に根付かせるために大切である.
|