• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric study of some higher-order topological invariants related to corners

Research Project

Project/Area Number 19K14545
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionTohoku University (2021-2022)
National Institute of Advanced Industrial Science and Technology (2019-2020)

Principal Investigator

Hayashi Shin  東北大学, 材料科学高等研究所, 助教 (70807833)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords指数理論 / K理論 / 四半面テープリッツ作用素 / 高次トポロジカル絶縁体 / バルク・コーナー対応 / トポロジカル角状態 / テープリッツ作用素 / 高次トポロジカル相 / トポロジカル絶縁体 / 指数定理
Outline of Research at the Start

四半面Toeplitz作用素の族の解析的指数がある種の離散空間上の高次不変量として位置づけられている. この視点を発展させ, ここでの高次不変量の幾何学的位置付けを明らかにすることを大きな目標として, 四半面Toeplitz作用素の族の指数の理解の深化と, 四半面Toeplitz作用素の指数理論の連続の空間の上へ展開に取り組む.
本研究は近年物性物理学で盛んに研究されている高次トポロジカル絶縁体のトポロジーの定義や基盤を与えるものとしての意義もある. 応用のための基礎理論の整備に取り組む.

Outline of Final Research Achievements

We conducted research to elucidate index theory for operators on a discrete quarter-plane (quarter-plane Toeplitz operators). Based on a well-expected relation between index theory for quarter-plane Toeplitz operators and higher-order topological insulators in condensed matter physics, we aimed to clarify the geometric viewpoint for indices of quarter-plane Toeplitz operators as some higher invariants. As a result, we derived an index formula that reveals the underlying geometric picture and the role of analyticity. Additionally, we found explicit contact with higher-order topological insulators and investigated foundational theories for quarter-plane Toeplitz operators for applications. We also conducted some theoretical proposals for the study of topological insulators in collaboration with condensed matter physicists.

Academic Significance and Societal Importance of the Research Achievements

ある種の離散的な角と関連したトポロジーの背後にある幾何的描像を明らかにし, 特に解析性の役割を見出したことは, さらなる展開の手がかりとなる可能性がある. また, 物性物理学のトピックである高次トポロジカル絶縁体と指数理論の関連を明確にするとともに, 実際にいくつかの応用を行った. この意味で本研究は高次トポロジカル絶縁体のトポロジーを取り扱う理論基盤の開拓に向けた数学的取り組みとしての意義もある.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2023 2022 2021 2020 2019

All Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (18 results) (of which Int'l Joint Research: 4 results,  Invited: 8 results)

  • [Journal Article] An Index Theorem for Quarter-Plane Toeplitz Operators via Extended Symbols and Gapped Invariants Related to Corner States2022

    • Author(s)
      Hayashi Shin
    • Journal Title

      Communications in Mathematical Physics

      Volume: - Issue: 1 Pages: 429-462

    • DOI

      10.1007/s00220-022-04600-w

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Classification of topological invariants related to corner states2021

    • Author(s)
      Hayashi Shin
    • Journal Title

      Letters in Mathematical Physics

      Volume: 111 Issue: 5 Pages: 1-54

    • DOI

      10.1007/s11005-021-01460-8

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Gapless States Localized along a Staircase Edge in Second-Order Topological Insulators2021

    • Author(s)
      Nagasato Yuki、Takane Yositake、Yoshimura Yukinori、Hayashi Shin、Nakanishi Takeshi
    • Journal Title

      Journal of the Physical Society of Japan

      Volume: 90 Issue: 10 Pages: 104703-104703

    • DOI

      10.7566/jpsj.90.104703

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Toeplitz operators on concave corners and topologically protected corner states2019

    • Author(s)
      Hayashi Shin
    • Journal Title

      Letters in Mathematical Physics

      Volume: 109 Issue: 10 Pages: 2223-2254

    • DOI

      10.1007/s11005-019-01184-w

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Second-order topological phases protected by chiral symmetry2019

    • Author(s)
      Okugawa Ryo、Hayashi Shin、Nakanishi Takeshi
    • Journal Title

      Physical Review B

      Volume: 100 Issue: 23 Pages: 205302-205302

    • DOI

      10.1103/physrevb.100.235302

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Index theory for quarter-plane Toeplitz operators and topological corner states2023

    • Author(s)
      Shin Hayashi
    • Organizer
      Japan-Netherlands Joint Seminar: Index Theory and Operator Algebras in Topological Physics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Index theory for quarter-plane Toeplitz operators and topological corner states2022

    • Author(s)
      Shin Hayashi
    • Organizer
      東北大学材料科学高等研究所, 数学連携グループセミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] An index theorem for quarter-plane Toeplitz operators via extended symbols2022

    • Author(s)
      林晋
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] トポロジカルな角状態への指数理論的アプローチ2022

    • Author(s)
      林晋
    • Organizer
      応用数理学会2022年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Topological invariants related to corner states via index theory and matrix factorizations2022

    • Author(s)
      Shin Hayashi
    • Organizer
      CREST Research Seminar on Theoretical studies of topological phases of matter
    • Related Report
      2022 Annual Research Report
  • [Presentation] On a topological invariant related to corner states via index theory and matrix factorizations2022

    • Author(s)
      Shin Hayashi
    • Organizer
      Variety and universality of bulk-edge correspondence in topological phases: From solid-state physics to transdisciplinary concepts
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification of topological invariants related to corner states2021

    • Author(s)
      Shin Hayashi
    • Organizer
      日本数学会2021年度会
    • Related Report
      2020 Research-status Report
  • [Presentation] Topological invariants and corner states for Hamiltonians on a lattice2021

    • Author(s)
      Shin Hayashi
    • Organizer
      第27回大阪市立大学国際学術シンポジウム 可視化の数理と対称性およびモジュライの深化
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Toeplitz作用素の指数理論と(高次)トポロジカル絶縁体のトポロジーについて2020

    • Author(s)
      林 晋
    • Organizer
      神戸幾何学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A mathematical approach to higher-order topological insulators2020

    • Author(s)
      林 晋
    • Organizer
      トポロジカル表面状態、ソリトンとブレーン、指数定理
    • Related Report
      2019 Research-status Report
  • [Presentation] Topological invariants and corner states2019

    • Author(s)
      Shin HAYASHI
    • Organizer
      Topological phases of interacting quantum systems
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Topological invariants and corner states for Hamiltonians on a lattice2019

    • Author(s)
      林 晋
    • Organizer
      新学術領域 「次世代物質探索のための離散幾何学」 研究成果発表会
    • Related Report
      2019 Research-status Report
  • [Presentation] Topological invariants and corner states for Hamiltonians on a lattice2019

    • Author(s)
      林 晋
    • Organizer
      第66回トポロジーシンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Topological K-theory and the bulk-edge correspondence2019

    • Author(s)
      林 晋
    • Organizer
      Young mathematicians workshop on algebraic, geometric, and analytic aspects of K-theory and vector bundles
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] ある種の角に対するテープリッツ作用素の指数理論とその応用2019

    • Author(s)
      林 晋
    • Organizer
      第66回幾何学シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] (高次)トポロジカル絶縁体におけるトポロジーについて2019

    • Author(s)
      林 晋
    • Organizer
      関西ゲージ理論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Topological invariants and corner states for Hamiltonians on a lattice2019

    • Author(s)
      林 晋
    • Organizer
      第13回物性科学領域横断研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Topological invariants and corner states for Hamiltonians on a lattice2019

    • Author(s)
      林 晋
    • Organizer
      首都大学東京・幾何学セミナー
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi