• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Local representation of smooth functions and asymptotic analysis in harmonic analysis

Research Project

Project/Area Number 19K14563
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionFukuoka Institute of Technology

Principal Investigator

Nose Toshihiro  福岡工業大学, 工学部, 助教 (90637993)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords局所ゼータ関数 / 解析接続 / 漸近解析 / 無限階微分可能関数 / 平坦関数 / トーリック・ブローアップ / ニュートン多面体 / 振動積分 / トーリック・プロ―アップ / 無限回微分可能関数
Outline of Research at the Start

関数が実解析的である場合には,特異点解消により,その関数を局所的に単項式で表すことができる.なおかつある種の非退化の条件の下では,関数の複雑な退化の情報がその局所表示の中に現れるように特異点解消を構成できる.本研究では,実解析性を仮定しない(無限回微分可能な)滑らかな関数に関する同様の局所表示について研究を行う.また,その局所表示を用いて調和解析における種々の問題において滑らかな関数の場合に関する解析を行う.本研究を通して,滑らかな関数と実解析的関数の,解析的な取り扱いにおける違いが明らかになると期待される.

Outline of Final Research Achievements

I study local zeta functions, which are holomorphic functions on the right half-plane defined by using infinitely differentiable smooth functions.
(1) We define a quantity determined from a smooth function in two dimensions to express the size of the region to which the local zeta function associated with the smooth function can be meromorphically continued. Lower estimates of these quantities are investigated for model functions represented by the sum of a monomial and flat functions. (2) The optimality of the above estimates in some sense is obtained. In particular, it is shown that in certain cases, the local zeta functions have both polar and non-polar singularities simultaneously. (3) It is resolved affirmatively whether the estimate obtained in (1) is optimal for all monomial exponents in the model functions.

Academic Significance and Societal Importance of the Research Achievements

本研究課題では無限階微分可能関数の局所表示に関する研究が主なテーマであったが、それに関連する形で無限階微分可能関数のモデル関数に対する局所ゼータ関数の解析接続可能領域や特異点での振る舞いについて詳細な結果を得た。調和解析の他の問題において、これらの結果およびその証明方法が無限階微分可能関数を取り扱う際の指針の一つとなることが期待される。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2024 2023 2022 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (9 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results)

  • [Journal Article] Meromorphic continuation and non-polar singularities of local zeta functions in some smooth cases2024

    • Author(s)
      T. Nose
    • Journal Title

      Tohoku Math. J.

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Meromorphy of local zeta functions in smooth model cases2020

    • Author(s)
      Kamimoto Joe、Nose Toshihiro
    • Journal Title

      Journal of Functional Analysis

      Volume: 278 Issue: 6 Pages: 108408-108408

    • DOI

      10.1016/j.jfa.2019.108408

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] ニュートン多面体から構成される特異点解消とその応用2024

    • Author(s)
      野瀬敏洋
    • Organizer
      第4回i-セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] 局所ゼータ関数の漸近挙動について2023

    • Author(s)
      野瀬敏洋
    • Organizer
      第3回i-seminar
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Meromorphic continuation and non-polar singularities of local zeta functions in some smooth cases2022

    • Author(s)
      Toshihiro Nose
    • Organizer
      Pacific Rim Complex and Symplectic Geometry Conference, Kyoto, 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 局所ゼータ関数の有理型解析接続と極性をもたない特異性について2022

    • Author(s)
      野瀬敏洋
    • Organizer
      第1回i-seminar
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Meromorphic continuation and non-polar singularities of local zeta functions in some smooth cases2022

    • Author(s)
      野瀬敏洋
    • Organizer
      2022年度多変数関数論冬セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 局所ゼータ関数の有理型解析接続と極性をもたない特異性について2020

    • Author(s)
      野瀬敏洋
    • Organizer
      東京大学複素解析幾何セミナー
    • Related Report
      2020 Research-status Report
  • [Presentation] 局所ゼータ関数の有理型解析接続可能領域について2020

    • Author(s)
      神本丈, 野瀬敏洋
    • Organizer
      日本数学会2020年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] 局所ゼータ関数の極性をもたない特異性について2020

    • Author(s)
      神本丈, 野瀬敏洋
    • Organizer
      日本数学会2020年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Meromorphy of local zeta functions in smooth model cases2019

    • Author(s)
      野瀬敏洋
    • Organizer
      2019年度多変数関数論冬セミナー
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi