• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments in scattering theory for nonlinear dispersive equations

Research Project

Project/Area Number 19K14580
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKagawa University (2020-2022)
Tsuyama National College of Technology (2019)

Principal Investigator

Miyazaki Hayato  香川大学, 教育学部, 准教授 (70752202)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords非線形分散型方程式 / 解挙動 / 散乱理論 / 定在波 / 安定性 / 偏微分方程式 / 分散性 / 長時間挙動 / 散乱問題
Outline of Research at the Start

本研究の目的は, 波の進行速度が振動数により変化する分散性が非等方である現象を記述する, 非線形偏微分方程式の散乱理論を構築することである. 散乱理論とは, 方程式が表す現象の過去の状態から未来の状態を予測する理論である.
本研究では, 磁化プラズマ内の非線型イオン音波の伝播を記述する方程式として知られるZakharov-Kuznetsov方程式を中心に, 散乱理論の未開拓領域を解明することを目指す.

Outline of Final Research Achievements

We study the behavior of solutions to nonlinear dispersive equations. In particular, we consider scattering solutions of the nonlinear Schroedinger equation. The solution behaves like linear solutions for a large time. On this research, we succeed in constructing scattering solutions that include the effects of nonlinearity in the case of that the solutions are on star graphs, or the equation has a kind of harmonic oscillator. Furthermore, we specify the condition under which standing waves of the system of nonlinear Klein-Gordon equations are strongly unstable. This result serves as a starting point for the study of scattering solutions in the system with large data.

Academic Significance and Societal Importance of the Research Achievements

グラフ上の非線形偏微分方程式は、分岐構造を考慮した数理モデルを考えると自然に現れるものであり、応用上の観点からも重要な研究対象である。非線形分散型方程式の散乱理論の研究において、星グラフ上の修正散乱解の存在を示したのは初めてであり、基本的な結果といえる。また、線形部にポテンシャルを持つ場合も、 技術的な問題から空間1次元に限定した先行研究が多く、多次元において修正散乱解を構成できたことは重要な成果であったと考えている。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (32 results)

All 2023 2022 2021 2020 2019 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (21 results) (of which Int'l Joint Research: 4 results,  Invited: 18 results) Remarks (5 results)

  • [Journal Article] Long-range scattering for a critical homogeneous type nonlinear Schr?dinger equation with time-decaying harmonic potentials2023

    • Author(s)
      Kawamoto Masaki、Miyazaki Hayato
    • Journal Title

      Journal of Differential Equations

      Volume: 365 Pages: 127-167

    • DOI

      10.1016/j.jde.2023.04.009

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic behavior for the long-range nonlinear Schr?dinger equation on the star graph with the Kirchhoff boundary condition2022

    • Author(s)
      Aoki Kazuki、Inui Takahisa、Miyazaki Hayato、Mizutani Haruya、Uriya Kota
    • Journal Title

      Pure and Applied Analysis

      Volume: 4 Issue: 2 Pages: 287-311

    • DOI

      10.2140/paa.2022.4.287

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation2022

    • Author(s)
      Masaki Satoshi、Miyazaki Hayato
    • Journal Title

      Differential Equations and Dynamical Systems

      Volume: - Issue: 3 Pages: 743-761

    • DOI

      10.1007/s12591-022-00609-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations2021

    • Author(s)
      Miyazaki Hayato
    • Journal Title

      Discrete & Continuous Dynamical Systems

      Volume: 41 Issue: 5 Pages: 2411-2445

    • DOI

      10.3934/dcds.2020370

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Lifespan of Solutions to Nonlinear Schroedinger Equations with General Homogeneous Nonlinearity of the Critical Order2020

    • Author(s)
      Miyazaki Hayato, Sobajima Motohiro
    • Journal Title

      Advances in Harmonic Analysis and Partial Differential Equations. Trends in Mathematics.

      Volume: 1 Pages: 197-207

    • DOI

      10.1007/978-3-030-58215-9_7

    • ISBN
      9783030582142, 9783030582159
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Lower bound for the lifespan of solutions to the generalized KdV equation with low-degree of nonlinearity2020

    • Author(s)
      Miyazaki Hayato
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 85 Pages: 303-313

    • DOI

      10.2969/aspm/08510303

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] ある非線形シュレディンガー方程式の長距離散乱について2023

    • Author(s)
      宮崎隼人
    • Organizer
      Takamatsu Mini Workshop on PDE and Geometric Analysis
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Long-range scattering for a homogeneous type nonlinear Schroedinger equation2023

    • Author(s)
      宮崎隼人
    • Organizer
      研究集会「微分方程式における解の漸近挙動の解析とその周辺」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 時間減衰する調和振動子を持つ臨界斉次型非線形シュレディンガー方程式における長距離散乱について2022

    • Author(s)
      川本昌紀, 宮崎隼人
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Long-range scattering for a homogeneous type nonlinear Schroedinger equation2022

    • Author(s)
      宮崎隼人
    • Organizer
      第778回応用解析研究会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 時間減衰する調和振動子を持つ非線形シュレディンガー方程式の長距離散乱について2022

    • Author(s)
      宮崎隼人
    • Organizer
      第二回香川における偏微分方程式研究会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Long-range scattering for a homogeneous type nonlinear Schroedinger equation2022

    • Author(s)
      宮崎隼人
    • Organizer
      RIMS共同研究 (公開型) スペクトル・散乱理論とその周辺
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Long-range scattering for a homogeneous type nonlinear Schroedinger equation2022

    • Author(s)
      宮崎隼人
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Long-range scattering for a homogeneous type nonlinear Schroedinger equation2022

    • Author(s)
      Hayato Miyazaki
    • Organizer
      Himeji Conference on Partial Differential Equations 2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Long-range scattering for a homogeneous type nonlinear Schroedinger equation2022

    • Author(s)
      宮崎隼人
    • Organizer
      Critical Exponent and Nonlinear Partial Differential Equations 2022
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Asymptotic behavior of solutions to the long-range nonlinear Schroedinger equation on a star graph2021

    • Author(s)
      宮崎隼人
    • Organizer
      京都大学数理解析研究所共同研究「線形および非線形分散型方程式の研究の進展」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Asymptotic behavior of solutions to the long-range nonlinear Schroedinger equation on a star graph2021

    • Author(s)
      宮崎隼人
    • Organizer
      第249回広島数理解析セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Asymptotic behavior of solutions to the long-range nonlinear Schroedinger equation on a star graph2021

    • Author(s)
      宮崎隼人
    • Organizer
      大阪大学数学教室微分方程式セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Asymptotic behavior of solutions to the long-range nonlinear Schroedinger equation on a star graph2021

    • Author(s)
      Hayato Miyazaki
    • Organizer
      California State University, Fullerton Geometry Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 斉次型非線形項を持つ非線形シュレーディンガー方程式の修正散乱について2021

    • Author(s)
      宮崎隼人
    • Organizer
      香川における偏微分方程式研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Kirchhoff境界条件をもつ星グラフ上の非線形Schroedinger方程式の解の漸近挙動について2021

    • Author(s)
      青木和貴, 戍亥隆恭, 水谷治哉, 宮崎隼人 (登壇者), 瓜屋航太
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Asymptotic behavior of solutions to the long-range nonlinear Schroedinger equation on a star graph2020

    • Author(s)
      宮崎隼人
    • Organizer
      研究集会「微分方程式の総合的研究」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Long range scattering for the nonlinear Schroedinger equation on the star graph with the Kirchhoff boundary condition2020

    • Author(s)
      宮崎隼人
    • Organizer
      Well-posedness Zoomセミナー
    • Related Report
      2020 Research-status Report
  • [Presentation] Strong instability for standing wave solutions to the system of the quadratic NLKG2019

    • Author(s)
      宮崎隼人
    • Organizer
      大阪大学数学教室 微分方程式セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Strong instability for standing wave solutions to the system of the quadratic NLKG2019

    • Author(s)
      Hayato Miyazaki
    • Organizer
      12th International ISAAC Congress, Session : Harmonic Analysis and Partial Diferential Equations
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Strong instability for standing wave solutions to the system of the quadratic NLKG2019

    • Author(s)
      宮崎隼人
    • Organizer
      京都大学数理解析研究所共同研究「線形および非線形分散型方程式の研究」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Strong instability for standing wave solutions to the system of the quadratic NLKG2019

    • Author(s)
      宮崎隼人
    • Organizer
      第6回神楽坂非線形波動研究会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] Hayato MIYAZAKI's Website

    • URL

      https://sites.google.com/view/hayato-miyazaki/home

    • Related Report
      2022 Annual Research Report
  • [Remarks] 香川大学研究者情報システム

    • URL

      https://www.kards.kagawa-u.ac.jp/profile/ja.49ff58e98528aec6edc27b186c88b5bc.html

    • Related Report
      2022 Annual Research Report
  • [Remarks] 香川大学研究者情報システム

    • URL

      http://www.kards.kagawa-u.ac.jp/profile/ja.20e0d180b3f6b82360392a0d922b9077.html

    • Related Report
      2020 Research-status Report
  • [Remarks] Hayato Miyazaki's Website

    • URL

      http://www.ed.kagawa-u.ac.jp/~miyazaki/research.html

    • Related Report
      2020 Research-status Report
  • [Remarks] 宮崎隼人のウェブサイト

    • URL

      http://www.tsuyama-ct.ac.jp/miyazaki/index.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi