• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Design of a Mass Customization Production System Based on Data-Driven Optimization

Research Project

Project/Area Number 19K15243
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 25010:Social systems engineering-related
Research InstitutionWaseda University

Principal Investigator

Ohmori Shunichi  早稲田大学, 理工学術院, 准教授 (30649348)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsサプライチェーンマネジメント / 分布的ロバスト最適化 / サプライチェーン・マネジメント / 分散最適化 / 需要予測 / オペレーションズ・リサーチ / ロバスト最適化 / 機械学習 / オペレーションズリサーチ
Outline of Research at the Start

昨今の顧客ニーズの多様化に対応するため、多くの製造業では、規模の経済を活かしつつ、消費者個々の好みに個別対応する「マス・カスタマイゼーション」への変革が重要課題である。この二律背反の要求を満たすためには、①市場・販売データに基づく需要シナリオ作成、②需要の不確実性に対して頑健なサプライチェーン設計を、迅速かつ統合的に意思決定する必要があるが、組織間の連携が必要となるため容易ではない。本研究では、市場・販売・生産のデータを組織横断的に活用することで、①②の統合的に意思決定する科学的手法の開発し、有効性を実証する。

Outline of Final Research Achievements

To respond to the diversification of customer needs in recent years, many manufacturing industries face the critical challenge of transforming to "mass customization," which combines the economies of scale with personalized responses to individual consumer preferences. To meet these seemingly contradictory demands, it is necessary to make rapid and integrated decisions involving (1) creating demand scenarios based on market and sales data and (2) designing a supply chain robust against demand uncertainties. However, this is not easy due to the need for inter-organizational collaboration.

This study aims to develop a scientific method for integrated decision-making on (1) and (2) by leveraging market, sales, and production data across organizational boundaries. Specifically, we propose a new methodology using a model called "data-driven optimization" and demonstrate its effectiveness.

Academic Significance and Societal Importance of the Research Achievements

迅速な意思決定が求められる昨今において、市場データから多様な顧客ニーズをいち早く理解し、顧客・製品特性に合わせた最適なサプライチェーン設計を行うことは、マス・カスタマイゼーションの実現に向けて強力な意思決定支援ツールとなる。また、上記の目的実現のために、ノンパラメトリック推定と分布的ロバスト最適化を融合した新しい先進的な手法を適用した。SC設計のみならず、大規模データを活用した予測・最適化を統合した意思決定全般への展開が期待できる。また、実企業との共同研究を通じて実データを用いた検証を行った。実証的に研究を評価できたことは社会実装を進める上でも意義が大きい。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2022 2021 2020 2019

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Consensus Distributionally Robust Optimization with Phi-Divergence2021

    • Author(s)
      Shunichi OHMORI
    • Journal Title

      IEEE Access

      Volume: 9462080 Pages: 92204-92213

    • DOI

      10.1109/access.2021.3091432

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A predictive prescription using minimum volume k-nearest neighbor enclosing ellipsoid and robust optimization2021

    • Author(s)
      Shunichi OHMORI
    • Journal Title

      Mathematics

      Volume: 9 Issue: 2 Pages: 1-16

    • DOI

      10.3390/math9020119

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The impact of location of 3D printers and robots on the supply chain2021

    • Author(s)
      Shunichi Ohmori
    • Journal Title

      Uncertain Supply Chain Management

      Volume: 2 Issue: 2 Pages: 489-500

    • DOI

      10.5267/j.uscm.2021.1.002

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A robust optimization for multi-period lost sales inventory control problem2020

    • Author(s)
      Shunichi Ohmori, Kazuho Yoshimoto
    • Journal Title

      Operations and Supply Chain Management

      Volume: 13 Pages: 375-381

    • DOI

      10.31387/oscm0430277

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Performance evaluation for distributionally robust optimization with uncertain binary entries2020

    • Author(s)
      Shunichi Ohmori, Kazuho Yoshimoto
    • Journal Title

      International Journal of Optimization and Control: Theories and Applications

      Volume: 11 Issue: 1 Pages: 1-9

    • DOI

      10.11121/ijocta.01.2021.00911

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Supply chain fragility analysis considering transportation disruptions2022

    • Author(s)
      Natsuki Kikumoto, Shunichi Ohmori
    • Organizer
      The Asia Pacific Industrial Engineering & Management Systems Conference 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Supply chain network designto reduce clothing wastein the apparel industry2022

    • Author(s)
      Shinya Yamada, Shunichi Ohmori
    • Organizer
      The Asia Pacific Industrial Engineering & Management Systems Conference 2022
    • Related Report
      2022 Research-status Report
  • [Presentation] A Data-driven Robust Decision Making for the Quick Response in the Fast Fashion2021

    • Author(s)
      Shunichi Ohmori
    • Organizer
      The 26th Internatinoal Conference on Production Research
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Consensus Distributionally Robust Optimization2020

    • Author(s)
      Shunichi Ohmori
    • Organizer
      INFORMS Annual Meeting 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] A multi-echelon inventory control using distributionally robust optimization2020

    • Author(s)
      Shunichi Ohmori, Kazuho Yoshimoto
    • Organizer
      International Conference of Industrial Technology and Management 2020
    • Related Report
      2019 Research-status Report
  • [Presentation] roduction planning under uncertainty via distributionally robust optimization2019

    • Author(s)
      Shunichi Ohmori, Kazuho Yoshimoto
    • Organizer
      INFORMS Annual Conference 2019
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi