Project/Area Number |
19K15243
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 25010:Social systems engineering-related
|
Research Institution | Waseda University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | サプライチェーンマネジメント / 分布的ロバスト最適化 / サプライチェーン・マネジメント / 分散最適化 / 需要予測 / オペレーションズ・リサーチ / ロバスト最適化 / 機械学習 / オペレーションズリサーチ |
Outline of Research at the Start |
昨今の顧客ニーズの多様化に対応するため、多くの製造業では、規模の経済を活かしつつ、消費者個々の好みに個別対応する「マス・カスタマイゼーション」への変革が重要課題である。この二律背反の要求を満たすためには、①市場・販売データに基づく需要シナリオ作成、②需要の不確実性に対して頑健なサプライチェーン設計を、迅速かつ統合的に意思決定する必要があるが、組織間の連携が必要となるため容易ではない。本研究では、市場・販売・生産のデータを組織横断的に活用することで、①②の統合的に意思決定する科学的手法の開発し、有効性を実証する。
|
Outline of Final Research Achievements |
To respond to the diversification of customer needs in recent years, many manufacturing industries face the critical challenge of transforming to "mass customization," which combines the economies of scale with personalized responses to individual consumer preferences. To meet these seemingly contradictory demands, it is necessary to make rapid and integrated decisions involving (1) creating demand scenarios based on market and sales data and (2) designing a supply chain robust against demand uncertainties. However, this is not easy due to the need for inter-organizational collaboration.
This study aims to develop a scientific method for integrated decision-making on (1) and (2) by leveraging market, sales, and production data across organizational boundaries. Specifically, we propose a new methodology using a model called "data-driven optimization" and demonstrate its effectiveness.
|
Academic Significance and Societal Importance of the Research Achievements |
迅速な意思決定が求められる昨今において、市場データから多様な顧客ニーズをいち早く理解し、顧客・製品特性に合わせた最適なサプライチェーン設計を行うことは、マス・カスタマイゼーションの実現に向けて強力な意思決定支援ツールとなる。また、上記の目的実現のために、ノンパラメトリック推定と分布的ロバスト最適化を融合した新しい先進的な手法を適用した。SC設計のみならず、大規模データを活用した予測・最適化を統合した意思決定全般への展開が期待できる。また、実企業との共同研究を通じて実データを用いた検証を行った。実証的に研究を評価できたことは社会実装を進める上でも意義が大きい。
|