Project/Area Number |
19K15666
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Tohoku University |
Principal Investigator |
Kim Sangryun 東北大学, 金属材料研究所, 助教 (20801442)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 超イオン導電 / 水素化物 / 固体電解質 / 全固体電池 / 錯体水素化物 / 超イオン伝導 / 二次電池 / 超リチウムイオン伝導 |
Outline of Research at the Start |
錯体水素化物は、ホウ素や炭素などの中心原子に水素が配位した『錯イオン』を有する材料であり、リチウムのような『陽イオン』が固体内を高速で移動することから全固体二次電池の固体電解質への適用が期待される。本研究では、錯イオンの分子レベルでの共存による物性設計指針の構築および構造と物性の相関解明により、伝導性と安定性の両側面の高機能性を兼ね備える錯体水素化物の創成に取り組む。具体的には、錯イオンの機能性に基づく材料設計により、錯体水素化物固体電解質の超イオンオン伝導率と高電気化学安定性を達成する。
|
Outline of Final Research Achievements |
Complex hydrides have recently received much attention as promising solid electrolyte systems for all-solid-state batteries, because of the high lithium ion conductivity of their high-temperature (high-T) phases, excellent stability against a lithium metal anode, and a highly deformable nature. However, the superionic conductivity of complex hydrides is achieved in only a few materials; therefore, an understanding of the material factors involved in the formation of the high-T phase at room temperature and experimental demonstration of their battery applications are required. In this study, I report the solid-solution region of complex hydrides, the relationship between the solid solution and the ionic conduction, and the electrochemical properties as a solid electrolyte for all-solid-state batteries.
|
Academic Significance and Societal Importance of the Research Achievements |
錯体水素化物を固体電解質として利用する研究は未踏分野と言ってよく、材料物性、その機構解明、デバイス実証などの様々な課題がある。そこで本研究では、「錯イオンの分子レベルの共存化による新規材料物性の創出」という固体電解質材料の新たな指導原理を提案している。また、固体電解質研究の主流となっている酸化物や硫化物とは異なる物性を実現し、高い潜在性を持ちながらも蓄電池材料としての認識が限定的であった錯体水素化物の学術的・社会的価値を格段に高めるとともに、固体電解質としての材料科学・材料学問において新たな研究領域を切り拓くものと期待される。
|