Deep learning-based prognosis prediction in cancer patients
Project/Area Number |
19K17208
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Juntendo University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 深層学習 / Radiomics / 放射線治療 / 人工知能 / 予後予測 / マルチモーダル学習 / マルチタスク学習 / 機械学習 / 深層特徴量 |
Outline of Research at the Start |
本研究は肺癌に対し標準的な根治的放射線治療を実施した患者の臨床データを使用して、新たな患者の予後を予測できる数理モデルを開発していく。 モデル開発の過程ではCT画像を含んだ放射線治療計画のデータから、その患者の腫瘍の状態を良く表現する特徴的な情報量を生み出せるネットワークを深層学習により作成する。この生み出された特徴量から更に予後と相関を持つ重要な特徴量を機械学習により選定し、モデルに組み込むことで既存のモデルを凌駕する予測性能を持つモデルを開発していく。
|
Outline of Final Research Achievements |
Accurate prediction of patient-specific response to the cancer treatment is important for personalized medicine. Imaging-based prediction methods can generally be categorized into 2 types: handcrafted-feature-based radiomics methods and automatically self-learned-feature-based deep learning methods, which has achieved state-of-the-art performances on image recognition recently. In this work, we generated various types of deep learning model such as multi-input model, multi-task model and multimodal model for the prediction of prognosis in patients with lung cancer or head and neck cancer, and investigated the performances.
|
Academic Significance and Societal Importance of the Research Achievements |
現在の癌治療は癌種や病期などに基づいて画一的に治療法が決定されている。しかし、放射線や抗がん剤を使った癌治療の効果は、例え同じ治療でも個々人が持つ背景に影響を受け、ある患者に有効であった治療法が別の患者にも効果的であるとは限らない。 治療を実施する前に取得する画像データから治療の効果を予測出来ることは、患者毎に治療効果を最大化する治療方法の決定や開発に繋がることが期待される。
|
Report
(3 results)
Research Products
(3 results)