• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of medical care support systems using an artificial intelligence approach for optimizing heart failure treatment

Research Project

Project/Area Number 19K17529
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 53020:Cardiology-related
Research InstitutionKyushu University

Principal Investigator

Tohyama Takeshi  九州大学, 大学病院, 医員 (00828197)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords慢性心不全 / 人工知能 / 診療支援システム / 心不全治療
Outline of Research at the Start

心不全は、種々の循環器疾患が心機能低下により最終的にたどりつく浮腫・息切れなどを主徴とする病態である。多種多様な検査法、治療薬・医療機器が開発されてきたが、どの心不全にも共通する標準的なもの以外は専門医が臨床的・経験的に取捨選択している部分が大きい。本研究では、人工知能(AI)の技術を用いて、心不全専門医と同様に患者の状態を把握し、最適な治療を提案する「診療支援システム」を構築する。将来的に、心不全専門医のいない医療施設においても、早期から専門医と同水準の治療を実施できるようになり、心不全の増悪防止や予後改善が見込まれる。

Outline of Final Research Achievements

This study aimed to develop a medical care support system using artificial intelligence technology to recognize the patients' condition with the level of specialists for heart failure treatment and propose optimal treatments. As a prototype model of the medical care support system, we developed an AI model that offers optimal prescriptions adjustment of an anticoagulant, one of the main therapeutic drugs in heart failure treatments. Furthermore, based on the large-scale heart failure registry (JROADHF), we have also developed an AI model that predicts the status and prognosis of patients with heart failure from DPC data (Diagnosis Procedure Combination). We revealed that our developed AI model could evaluate with higher accuracy than the heart failure risk model.

Academic Significance and Societal Importance of the Research Achievements

心不全診療は、この半世紀で様々な検査法、治療法が開発され選択肢そのものが多様化した。心不全治療は、病態把握から治療方針の選択の過程は非常に複雑であり、個々の診療においてはさらに専門的な知識・経験が要求される。
このように多様化・複雑化する心不全診療について、人工知能(AI)を応用することで、治療の最適化をサポートできると考えている。今回、心不全診療において、患者の状態把握や、処方調整を提案するAI開発を目的とした。本システムが確立することで、心不全診療のリソース問題の解決や、早期から専門的な治療介入により、心不全の増悪予防や予後改善も見込まれる。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (6 results)

All 2022 2021 2020 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results) Remarks (1 results) Funded Workshop (1 results)

  • [Journal Article] Machine learning‐based model for predicting 1?year mortality of hospitalized patients with heart failure2021

    • Author(s)
      Tohyama Takeshi、Ide Tomomi、Ikeda Masataka、Kaku Hidetaka、Enzan Nobuyuki、Matsushima Shouji、Funakoshi Kouta、Kishimoto Junji、Todaka Koji、Tsutsui Hiroyuki
    • Journal Title

      ESC Heart Failure

      Volume: 8 Issue: 5 Pages: 4077-4085

    • DOI

      10.1002/ehf2.13556

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Machine learning-based model for predicting one-year mortality of heart failure patients from DPC data2022

    • Author(s)
      Takeshi Tohyama, Tomomi Ide, Masataka Ikeda, Hidetaka Kaku, Nobuyuki Enzan, Shouji Matsushima, Kouta Funakoshi, Junji Kishimoto, Koji Todaka and Hiroyuki Tsutsui
    • Organizer
      第86回 日本循環器学会学術総会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Artificial intelligence-based analysis of payment system data can predict one-year mortality of hospitalized patients with heart failure2020

    • Author(s)
      T Tohyama, K Funakoshi, H Kaku, N Enzan, M Ikeda, S Matsushima, T Ide, K Todaka, H Tsutsui JROADHF investigators
    • Organizer
      European Society of Cardiology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Warfarin dose adjustment using machine learning techniques2020

    • Author(s)
      T Fukushima, T Tohyama, K Funakoshi, T Yamashita, T Ide, K Todaka, N Nakashima, H Tsutsui
    • Organizer
      日本循環器学会
    • Related Report
      2019 Research-status Report
  • [Remarks] SMART-HF

    • URL

      https://hfriskcalculator.herokuapp.com/

    • Related Report
      2021 Annual Research Report
  • [Funded Workshop] European Society of Cardiology2020

    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi