Project/Area Number |
19K20230
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60030:Statistical science-related
|
Research Institution | Kansai University (2020-2023) The Institute of Statistical Mathematics (2019) |
Principal Investigator |
Uehara Yuma 関西大学, システム理工学部, 准教授 (00822545)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 高頻度データ / 統計学 / 確率微分方程式 / 確率過程の統計 / ブートストラップ法 / 情報量規準 / モデル選択 / 正規型疑似尤度 / ブートストラップ / モデル選択理論 |
Outline of Research at the Start |
非正規分布特性を呈す時系列をその観測頻度とともにモデリング可能な非正規確率微分方程式の統計理論構築を試みる。具体的には、統計モデリングにおいて不可避なモデルの誤特定を考慮したリサンプリング手法やモデル選択手法を考案し、理論的な性質を明らかにする。これに並行して、考案手法を統計解析ソフト R 上へ実装を行いオープンリソース化する。
|
Outline of Final Research Achievements |
We have conducted research on non-Gaussian stochastic differential equation models, which are one of the candidate models for describing high-frequency data. We focus on the construction of statistical methods which can be applied to a wide range of driving noise classes in a unified manner. Specifically, we developed a block bootstrap method to approximate the asymptotic distribution of the Gaussian quasi maximum likelihood estimator, taking into account the model misspecification. We also derived a BIC-type model selection criterion based on the expansion of the log marginal Gaussian quasi likelihood and clarified its properties.
|
Academic Significance and Societal Importance of the Research Achievements |
非正規確率微分方程式モデルは, 駆動ノイズの分布特性の豊富さから高い表現力を持っているものの, その微小時間挙動の複雑さが問題となっていた. 本研究により, 広範の非正規確率微分方程式モデルのクラスへ適用可能な統計手法が得られたことで, 高頻度データ解析の発展に寄与すると考えられる.
|