• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development and implementation of generic statistical methods for non-Gaussian stochastic differential equation models.

Research Project

Project/Area Number 19K20230
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60030:Statistical science-related
Research InstitutionKansai University (2020-2023)
The Institute of Statistical Mathematics (2019)

Principal Investigator

Uehara Yuma  関西大学, システム理工学部, 准教授 (00822545)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords高頻度データ / 統計学 / 確率微分方程式 / 確率過程の統計 / ブートストラップ法 / 情報量規準 / モデル選択 / 正規型疑似尤度 / ブートストラップ / モデル選択理論
Outline of Research at the Start

非正規分布特性を呈す時系列をその観測頻度とともにモデリング可能な非正規確率微分方程式の統計理論構築を試みる。具体的には、統計モデリングにおいて不可避なモデルの誤特定を考慮したリサンプリング手法やモデル選択手法を考案し、理論的な性質を明らかにする。これに並行して、考案手法を統計解析ソフト R 上へ実装を行いオープンリソース化する。

Outline of Final Research Achievements

We have conducted research on non-Gaussian stochastic differential equation models, which are one of the candidate models for describing high-frequency data. We focus on the construction of statistical methods which can be applied to a wide range of driving noise classes in a unified manner. Specifically, we developed a block bootstrap method to approximate the asymptotic distribution of the Gaussian quasi maximum likelihood estimator, taking into account the model misspecification. We also derived a BIC-type model selection criterion based on the expansion of the log marginal Gaussian quasi likelihood and clarified its properties.

Academic Significance and Societal Importance of the Research Achievements

非正規確率微分方程式モデルは, 駆動ノイズの分布特性の豊富さから高い表現力を持っているものの, その微小時間挙動の複雑さが問題となっていた. 本研究により, 広範の非正規確率微分方程式モデルのクラスへ適用可能な統計手法が得られたことで, 高頻度データ解析の発展に寄与すると考えられる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (7 results)

All 2024 2023 2022 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Bootstrap method for misspecified ergodic Levy driven stochastic differential equation models2022

    • Author(s)
      Yuma Uehara
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: - Issue: 4 Pages: 1-33

    • DOI

      10.1007/s10463-022-00854-2

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Schwartz‐type model selection for ergodic stochastic differential equation models2020

    • Author(s)
      Eguchi Shoichi、Uehara Yuma
    • Journal Title

      Scandinavian Journal of Statistics

      Volume: - Issue: 3 Pages: 950-968

    • DOI

      10.1111/sjos.12474

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] 飛躍型拡散過程モデルの統計理論2024

    • Author(s)
      上原悠槙
    • Organizer
      佐賀大学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Weighted block bootstrap for misspecified ergodic Levy driven SDE models2023

    • Author(s)
      Yuma Uehara
    • Organizer
      10th International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Annual Research Report
  • [Presentation] 誤特定連続時間モデルのためのブートストラップ理論2019

    • Author(s)
      上原悠槙
    • Organizer
      統計関連学会連合大会2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Bootstrap method for misspecified ergodic stochastic differential equation models2019

    • Author(s)
      Yuma Uehara
    • Organizer
      CMStatistics 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bootstrap method for misspecified stochastic differential equation models2019

    • Author(s)
      Yuma Uehara
    • Organizer
      Risk and Statistics - 2nd ISM-UUlm Joint Workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi