Unification of Deep Learning and Generalized Mathematical Model for Independence-Based Audio Source Separation
Project/Area Number |
19K20306
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 61010:Perceptual information processing-related
|
Research Institution | Kagawa National College of Technology |
Principal Investigator |
Kitamura Daichi 香川高等専門学校, 電気情報工学科, 講師 (40804745)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 音源分離 / 統計的信号処理 / アレイ信号処理 / 深層学習 / 補聴器 / 独立成分分析 / 独立低ランク行列分析 / 生成モデル / 確率的信号処理 / 音響信号処理 |
Outline of Research at the Start |
本研究では,音響信号を対象とした音源分離の数理的深化と高性能化を目的として,申請者が過去に提案した手法である「独立低ランク行列分析」を数理的に一般化した新しい音源分離フレームワークを確立する.これは「音源間の統計的独立性と各音源の構造に関する制約条件」という新たな考え方であり,いかに適切な音源構造制約を与えるかについて,数理的・データ的観点から発展させる.具体的には「一般化ガウス分布生成モデル」と「音源モデルplug-and-playな最適化法」の理論解析と確立,「深層学習に基づく音源教師あり手法」への発展,「ユーザの介入を組み合わせたインタラクティブ音源分離手法」の開発の3点を目標とする.
|
Outline of Final Research Achievements |
This research project aims at extending an existing audio source separation techniques. Audio source separation is a technique that estimates specific audio sources from an observed mixture signal. It is expected that this technique can be applied to many applications using audio signals. In particular, this research project addresses mathematical deepening of the method called "independent low-rank matrix analysis (ILRMA)", which was proposed by the principal investigator. The framework established by this research project is a generalization of conventional techniques and improves performance of audio source separation. This framework provides a new investigation about the unification of "statistical independence between sources" and "structures of each source (source model)" and extends the source model from the viewpoint of both mathematical generalizations and data-driven approaches.
|
Academic Significance and Societal Importance of the Research Achievements |
本成果により,従来の音源分離手法よりもさらに高性能なアルゴリズムを複数提案することができた.具体的には,(1)「一般化ガウス分布生成モデル」と「音源モデルplug-and-playな最適化法」の理論解析と確立,(2)「深層学習に基づく音源教師あり手法」への発展,(3)「ユーザの介入を組み合わせたインタラクティブ音源分離手法」の3点について,新しい理論として構築できた.(1)については,純粋な音源分離性能の向上に寄与し,(2)については,近年充実しつつある音響信号の学習データの有効活用へとつなげることが可能である.さらに,(3)によって,人と機械が協働する音源分離アルゴリズムが実現された.
|
Report
(4 results)
Research Products
(86 results)