• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Investigation on acquisition and dynamics of music creation based on theories of statistical learning and evolution

Research Project

Project/Area Number 19K20340
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyoto University

Principal Investigator

Nakamura Eita  京都大学, 白眉センター, 特定助教 (10707574)

Project Period (FY) 2019-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords進化的統計学習理論 / 文化進化 / 進化理論 / 力学系 / 音楽創作 / 音楽作曲モデル / 創作者と評価者の進化モデル / 知能情報処理 / 統計学習生成系 / 音楽知能情報 / 音楽創作モデル / 共役分布則 / 動的な統計学習理論 / 文化的進化 / 音楽生成モデル / 音楽知能情報処理
Outline of Research at the Start

本研究では、統計学習理論と進化理論に基づき音楽創作の学習・進化メカニズムを力学系の観点から明らかにする。文化を伝達する行為は人間の顕著な特徴であるが、文化の伝達の定量的・理論的側面はまだ十分に理解されていない。情報学分野では、音楽などの知能情報処理における統計学習の重要性が明らかになっている。一方で、生物・物理分野では、動的な生命現象の理解には進化理論が必須の道具となっている。本研究では、この両者を融合する動的な統計学習過程のモデルを構成・解析し、文化的進化を統計モデルの時間発展の観点で調べる。

Outline of Final Research Achievements

To understand the function of intelligence in the creation and evolution of culture, this study investigated the dynamic statistical learning process in the creative style of music through theory and observational experiments, based on a framework integrating statistical learning and evolutionary theory. Experimentally, we collected historical music data from Western classical music and Japanese popular music, and statistically analyzed the evolution of musical characteristics. We found that there are laws in the distribution form of the frequency of musical elements and in the evolutionary dynamics. Theoretically, we analyzed a dynamical system called the statistical learn-generate system, which represents the evolution of a population consisting of creators who produce cultural products through statistical learning and evaluators who evaluate the data, and studied the evolution in creative styles within the population. Automatic music transcription technology was also studied.

Academic Significance and Societal Importance of the Research Achievements

文化の進化を生物進化と同様の理論的枠組みで理解する試みは既にダーウィンの時代からあり、20世紀後半から生物・物理分野で関連研究が発達している。一方で、芸術のような高度な知能が関わる文化の進化を理解するためには、本研究で扱った統計学習に基づく情報伝達過程の影響を調べる必要があると考えられる。本研究の成果は、実際の文化データには統計学習の効果によると考えられる興味深い法則が見られ、その一部は一般性を持つ理論によって説明できることを示した点で、今後の文化進化研究に有用な知見が得られたと言える。また自動採譜技術および自動作曲技術において得られた成果は、文化進化の実験的研究に今後応用できる。

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • Research Products

    (22 results)

All 2021 2020 2019 Other

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 2 results) Presentation (8 results) (of which Int'l Joint Research: 8 results) Remarks (6 results) Patent(Industrial Property Rights) (1 results)

  • [Journal Article] Non-Local Musical Statistics as Guides for Audio-to-Score Piano Transcription2021

    • Author(s)
      Kentaro Shibata, Eita Nakamura, Kazuyoshi Yoshii
    • Journal Title

      Information Sciences

      Volume: 566 Pages: 262-280

    • DOI

      10.1016/j.ins.2021.03.014

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Audio-to-Score Singing Transcription Based on a CRNN-HSMM Hybrid Model2021

    • Author(s)
      Ryo Nishikimi, Eita Nakamura, Masataka Goto, Kazuyoshi Yoshii
    • Journal Title

      APSIPA Transactions on Signal and Information Processing

      Volume: 10 Issue: 1 Pages: 1-13

    • DOI

      10.1017/atsip.2021.4

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Statistical Method for Music Structure Analysis Based on a Hierarchical HSMM2020

    • Author(s)
      柴田 剛, 錦見 亮, 中村 栄太, 吉井 和佳
    • Journal Title

      情報処理学会論文誌

      Volume: 61 Issue: 4 Pages: 757-767

    • DOI

      10.20729/00204224

    • NAID

      170000181816

    • Year and Date
      2020-04-15
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Bayesian Singing Transcription Based on a Hierarchical Generative Model of Keys, Musical Notes, and F0 Trajectories2020

    • Author(s)
      Nishikimi Ryo、Nakamura Eita、Goto Masataka、Itoyama Katsutoshi、Yoshii Kazuyoshi
    • Journal Title

      IEEE/ACM Transactions on Audio, Speech, and Language Processing

      Volume: 28 Pages: 1678-1691

    • DOI

      10.1109/taslp.2020.2996095

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Bayesian Melody Harmonization Based on a Tree-Structured Generative Model of Chord Sequences and Melodies2020

    • Author(s)
      Hiroaki Tsushima, Eita Nakamura, Kazuyoshi Yoshii
    • Journal Title

      IEEE/ACM Transactions on Audio, Speech, and Language Processing

      Volume: 28 Pages: 1644-1655

    • DOI

      10.1109/taslp.2020.2996088

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Statistical learning and estimation of piano fingering2020

    • Author(s)
      Eita Nakamura, Yasuyuki Saito, Kazuyoshi Yoshii
    • Journal Title

      Information Sciences

      Volume: 517 Pages: 68-85

    • DOI

      10.1016/j.ins.2019.12.068

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Statistical Evolutionary Laws in Music Styles2019

    • Author(s)
      Eita Nakamura, Kunihiko Kaneko
    • Journal Title

      Scientific Reports

      Volume: 9(15993) Issue: 1 Pages: 1-11

    • DOI

      10.1038/s41598-019-52380-6

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Statistical Correction of Transcribed Melody Notes Based on Probabilistic Integration of a Music Language Model and a Transcription Error Model2021

    • Author(s)
      Yuki Hiramatsu, Go Shibata, Ryo Nishikimi, Eita Nakamura, Kazuyoshi Yoshii
    • Organizer
      46th IEEE International Conference on Acoustics, Speech and Signal Processing
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Statistical Music Structure Analysis Based on a Homogeneity- and Repetitiveness-Aware Hierarchical Hidden Semi-Markov Model2019

    • Author(s)
      Go Shibata, Ryo Nishikimi, Eita Nakamura, Kazuyoshi Yoshii
    • Organizer
      20th International Society for Music Information Retrieval Conference (ISMIR)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] End-to-End Melody Note Transcription Based on a Beat-Synchronous Attention Mechanism2019

    • Author(s)
      Ryo Nishikimi, Eita Nakamura, Masataka Goto, Kazuyoshi Yoshii
    • Organizer
      IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Chord Function Identification with Modulation Detection Based on HMM2019

    • Author(s)
      Yui Uehara, Eita Nakamura, Satoshi Tojo
    • Organizer
      14th International Symposium on Computer Music Multidisciplinary Research (CMMR)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Unsupervised Melody Style Conversion2019

    • Author(s)
      Eita Nakamura, Kentaro Shibata, Ryo Nishikimi, Kazuyoshi Yoshii
    • Organizer
      44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Joint Transcription of Lead, Bass, and Rhythm Guitars Based on a Factorial Hidden Semi-Markov Model2019

    • Author(s)
      Kentaro Shibata, Ryo Nishikimi, Satoru Fukayama, Masataka Goto, Eita Nakamura, Katsutoshi Itoyama, Kazuyoshi Yoshii
    • Organizer
      44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Automatic Singing Transcription Based on Encoder-Decoder Recurrent Neural Networks with a Weakly-Supervised Attention Mechanism2019

    • Author(s)
      Ryo Nishikimi, Eita Nakamura, Satoru Fukayama, Masataka Goto, Kazuyoshi Yoshii
    • Organizer
      44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayesian Drum Transcription Based on Nonnegative Matrix Factor Decomposition with a Deep Score Prior2019

    • Author(s)
      Shun Ueda, Kentaro Shibata, Yusuke Wada, Ryo Nishikimi, Eita Nakamura, Kazuyoshi Yoshii
    • Organizer
      44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Remarks] 研究代表者ホームページ

    • URL

      https://eita-nakamura.github.io/index-ja.html

    • Related Report
      2020 Annual Research Report
  • [Remarks] 音響から楽譜へのピアノ採譜

    • URL

      https://audio2score.github.io/index-ja.html

    • Related Report
      2020 Annual Research Report
  • [Remarks] 中村 栄太 研究者のwebページ

    • URL

      http://eita-nakamura.github.io/index-ja.html

    • Related Report
      2019 Research-status Report
  • [Remarks] 多様なスタイルによる自動音楽生成

    • URL

      https://melodyarrangement.github.io/demo-ja.html

    • Related Report
      2019 Research-status Report
  • [Remarks] PIGデータセット(ピアノ運指データセット)

    • URL

      http://beam.kisarazu.ac.jp/~saito/research/PianoFingeringDataset/index-ja.html

    • Related Report
      2019 Research-status Report
  • [Remarks] Statistical Evolutionary Laws in Music Styles

    • URL

      https://evomusstyle.github.io/

    • Related Report
      2019 Research-status Report
  • [Patent(Industrial Property Rights)] 楽曲データから音楽スタイルを自動習得して自動作曲・編曲する方法及び装置2019

    • Inventor(s)
      中村栄太、吉井和佳
    • Industrial Property Rights Holder
      京都大学
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2020-012430
    • Filing Date
      2019
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi