• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on shadows and fibration structures of 4-manifolds

Research Project

Project/Area Number 19K21019
Project/Area Number (Other) 18H05827 (2018)
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund (2019)
Single-year Grants (2018)
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionChuo University (2019)
Tohoku University (2018)

Principal Investigator

Naoe Hironobu  中央大学, 理工学部, 助教 (10823255)

Project Period (FY) 2018-08-24 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords4次元多様体 / シャドウ / レフシェッツファイバー空間 / 微分構造 / 接触構造 / 結び目理論 / 特異点論 / 3次元多様体 / 4次元多様体 / ファイバー束 / 結び目 / ザイフェルトファイバー空間 / スパイン / 低次元トポロジー / トポロジー / シャドウ複雑度 / ファイバー構造 / ハンドル分解
Outline of Research at the Start

シャドウとは4次元多様体に適切に埋め込まれた2次元の多面体であり,4次元多様体の一種の表示を与える.また,シャドウのもつ頂点の個数の最小値としてシャドウ複雑度と呼ばれる4次元多様体の不変量が定義される.本研究では,シャドウを用いた4次元多様体のファイバー束構造の研究,及びシャドウ複雑度を用いた4次元多様体の分類・特徴づけを行う.具体的には,4次元多様体のレフシェッツ束とその派生概念に焦点を当て,シャドウが2次元多面体であることを活用し研究を行う.また,シャドウ複雑度に関しては,境界の3次元多様体の幾何構造にも着目し研究を進める.

Outline of Final Research Achievements

We studied differential structures and fibration structures of 4-manifolds by using shadows. The main achievements are as follows. (1) We provided the method of construction of a shadow for a divide and shadow description of Lefschetz fibrations. (2) In terms of shadows, we provided a sufficient condition for an acyclic 4-manifold with boundary the 3-sphere to be diffeomorphic to the standard 4-ball. (3) We define shadows for 2-knots and provided some examples. (4) We studied a correspondence between flow-spines and contact structures on 3-manifolds and provided some examples.

Academic Significance and Societal Importance of the Research Achievements

シャドウは4次元多様体に関する様々な観点を与える;ハンドル分解,``多面体上の''円板束,曲面の埋め込み・はめ込み.今回の研究は,これらの概念を4次元多様体の中で相互に理解しつつ,4次元トポロジーで重要視される微分構造やファイバー構造の研究に対して新たな研究手法を与えるというものである.また,シャドウは多面体という組み合わせ的性質を持つ応用性の高い対象であり,具体例としても扱いやすい側面がある.シャドウの適用例・応用例を提示したことで,今後の低次元トポロジーにおける研究のひとつの方針を与えたと言える.

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • Research Products

    (16 results)

All 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (14 results) (of which Int'l Joint Research: 4 results,  Invited: 9 results)

  • [Journal Article] Shadows of acyclic 4-manifolds with sphere boundary2020

    • Author(s)
      Yuya Koda, Hironobu Naoe
    • Journal Title

      Algebraic & Geometric Topology

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Milnor fibration, A'Campo's divide and Turaev's shadow2020

    • Author(s)
      Masaharu Ishikawa, Hironobu Naoe
    • Journal Title

      the Proceedings of FJV2017 Kagoshima

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] 4次元多様体のシャドウとレフシェッツファイバー空間2020

    • Author(s)
      直江央寛
    • Organizer
      関東若手幾何セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] フロースパインと接触構造2020

    • Author(s)
      直江央寛
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Lefschetz fibrations of divides and shadows2020

    • Author(s)
      直江央寛
    • Organizer
      ひねる代数~Hurwitz actionとその周辺~
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Lefschetz fibrations of divides and shadows2019

    • Author(s)
      直江央寛
    • Organizer
      Hyper plane arrangements and Japanese Australian workshop on Real and Complex Singularities
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 4次元ホモロジー球体の微分構造とシャドウ2019

    • Author(s)
      直江央寛
    • Organizer
      大阪大学トポロジーセミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Shadows of acyclic 4-manifolds with sphere boundary2019

    • Author(s)
      直江央寛
    • Organizer
      北陸結び目セミナー2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Shadows of acyclic 4-manifolds with sphere boundary II2019

    • Author(s)
      直江央寛
    • Organizer
      ハンドルセミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Shadows of acyclic 4-manifolds with sphere boundary2019

    • Author(s)
      直江央寛
    • Organizer
      ハンドルセミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 2-knots in shadows of 4-manifolds2019

    • Author(s)
      直江央寛
    • Organizer
      Differential Topology 19
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Closed 4-manifolds with shadow-complexity one2018

    • Author(s)
      直江央寛
    • Organizer
      Four Dimensional Topology
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Lefschetz fibrations of divides and shadows2018

    • Author(s)
      直江央寛
    • Organizer
      The 6th Franco-Japanese-Vietnamese Symposium on Singularities
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Fibered links and Lefschetz fibrations of A’Campo’s divides via Turaev’s shadows2018

    • Author(s)
      直江央寛
    • Organizer
      東北結び目セミナー 2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] Shadows and Milnor fibrations of divides2018

    • Author(s)
      直江央寛
    • Organizer
      広島大学 トポロジー・幾何セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Shadows and Milnor fibrations of divides2018

    • Author(s)
      直江央寛
    • Organizer
      Kyoto Young Topologists Seminar
    • Related Report
      2018 Annual Research Report
    • Invited

URL: 

Published: 2018-08-27   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi