• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of the computing environment using GPGPU for particle physics experiments

Research Project

Project/Area Number 19K21045
Project/Area Number (Other) 18H05860 (2018)
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund (2019)
Single-year Grants (2018)
Review Section 0203:Particle-, nuclear-, astro-physics, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

KANEDA Michiru  東京大学, 素粒子物理国際研究センター, 特任助教 (10822033)

Project Period (FY) 2018-08-24 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords加速器 / 素粒子(実験) / 大規模計算機 / 大規模計算
Outline of Research at the Start

陽子陽子衝突型加速器LHCを用いた実験データを処理するために形成された世界規模の分散コンピューティングシステム、The Worldwide LHC Computing Grid (WLCG)にGeneral-Purpose computing on Graphics Processing Units (GPGPU)を組み込むシステムを確立する。
また、GPGPU対応した解析ソフトウェアを開発し現在のCPUだけでは処理しきれないデータ量の処理を実現する。

Outline of Final Research Achievements

Tokyo regional analysis center at the University of Tokyo is a computing center for the Large Hadron Colider (LHC) at CERN. The center provides computing resources for LHC jobs and local resources to the ATLAS Japan members, too. In this research, GPU resources were newly installed in the center and constructed new system using GPU in the production system for the LHC. The system allows to use the data of experiments as same as previous CPU system and makes it possible to develop new softwares using GPU.

Academic Significance and Societal Importance of the Research Achievements

計算機資源としてCPUは性能増加度合いが鈍化してきており、CPU以外のリソースによる計算速度の増加が待ち望まれている。GPUは近年盛り上がりを見せている深層機械学習に適していることもあり非常に速い速度で性能が上がってきている。LHCの実験データはエクサバイトに届くほどの膨大なデータ量であり、またシミュレーションや物理解析で非常に複雑なデータ処理を行っており世界中の大量の計算機リソースを利用してこれを処理している。この中でGPUを用いた新たな計算方法を確立することでさらなるGPUの利用の促進を促し、計算機システムの大きな改善をもたらすことにつながる。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • Research Products

    (6 results)

All 2019 Other

All Presentation (5 results) (of which Int'l Joint Research: 4 results) Remarks (1 results)

  • [Presentation] Deployment of grid worker node in cloud based on Google Cloud Platform2019

    • Author(s)
      Michiru Kaneda
    • Organizer
      Asian Forum for Accelerators and Detectors
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] R&D for the expansion of the Tokyo regional analysis center using Google Cloud Platform2019

    • Author(s)
      Michiru Kaneda
    • Organizer
      International Symposium on Grids & Clouds 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] HTCondor with Google Cloud Platform2019

    • Author(s)
      Michiru Kaneda
    • Organizer
      HTCondor Week 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] External Resources: Clouds and HPCs for the expansion of the ATLAS production system at the Tokyo regional analysis center2019

    • Author(s)
      Michiru Kaneda
    • Organizer
      24th International Conference on Computing in High Energy & Nuclear Physics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 東京ATLAS地域解析センターにおけるHPCリソースの活用2019

    • Author(s)
      兼田充
    • Organizer
      日本物理学会 2019年秋季大会
    • Related Report
      2019 Annual Research Report
  • [Remarks] HTCondor pool manager for Google Cloud Platform.

    • URL

      https://github.com/rcmdnk/gcpm

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2018-08-27   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi