• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of Gross-Zagier type formula via perfectiod spaces

Research Project

Project/Area Number 19K21829
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Mieda Yoichi  東京大学, 大学院数理科学研究科, 准教授 (70526962)

Project Period (FY) 2019-06-28 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywordsパーフェクトイド空間 / Gross-Zagier型公式 / 志村多様体 / Rapoport-Zink空間 / 数論的交叉数 / Gross-Zagier公式
Outline of Research at the Start

無限レベルRapoport-Zink空間に対する「無限レベル版の数論的基本補題」という新しい公式を定式化し,証明する.さらに,その公式と相対跡公式を組み合わせることで,Bertolini-Darmonによるリジッド解析的Gross-Zagier公式を一般化し,そのBeilinson-Bloch-Kato予想への応用を行う.Lubin-Tate空間やモジュラー曲線といった比較的扱いやすい対象から研究を始め,得られた定式化を段階的に一般化することを目指す.

Outline of Final Research Achievements

The original goal was to study the conjecture so-called the arithmetic fundamental lemma by using the theory of perfectoid spaces. However, in the first year the conjecture had been solved by Wei Zhang, so I slightly changed the goal. I studied the Tate conjecture for the unitary Shimura varieties and a generalization of the p-adic Gross-Zagier formula due to Darmon-Rotger. I got some important ideas, but I need further research to achieve concrete results. I also investigated the relation between Fargues-Scholze's local Langlands correspondence and the usual one, and obtained some results in the case of the symplectic group Sp(6).

Academic Significance and Societal Importance of the Research Achievements

ユニタリ型志村多様体のTate予想に関する研究,p進Gross-Zagier公式を一般化する研究は,BSD予想の一般化であるBeilinson-Bloch-加藤予想への貢献に直接結び付くものである.本研究によって得たアイデアにより,研究を進めるべき方向性が明確になったため,近い将来に具体的な成果が得られることが期待できる.また,局所Langlands対応に関する成果は,Fargues-Scholzeの構成が正統的なものであることを保証するとともに,局所志村多様体のエタールコホモロジーの決定という,従来から興味を持たれてきた問題にも応用を持つものである.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 2021 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results) Remarks (1 results)

  • [Journal Article] Lefschetz trace formula and l-adic cohomology of Rapoport?Zink tower for GSp(4)2022

    • Author(s)
      Mieda Yoichi
    • Journal Title

      Mathematische Annalen

      Volume: オンライン Issue: 1-2 Pages: 131-192

    • DOI

      10.1007/s00208-021-02342-z

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] On Fargues--Scholze local Langlands correspondence for some supercuspidal representations of Sp(6)2023

    • Author(s)
      Yoichi Mieda
    • Organizer
      Satellite Conference in Number Theory of International Congress of Basic Science
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On Fargues--Scholze local Langlands correspondence for some supercuspidal representations of Sp(6)2023

    • Author(s)
      Yoichi Mieda
    • Organizer
      The fifth Japan-Taiwan Number theory conference
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On supercuspidal part of the l-adic cohomology of the Rapoport-Zink space for GSp(4)2022

    • Author(s)
      Yoichi Maeda
    • Organizer
      30eradecaen: 30e Rencontres arithmetiques de Caen
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On supercuspidal part of the l-adic cohomology of the Rapoport-Zink space for GSp(4)2022

    • Author(s)
      Yoichi Maeda
    • Organizer
      The 2022 Pacific Rim Mathematical Association Congress
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 局所Langlands対応とp進幾何2021

    • Author(s)
      三枝 洋一
    • Organizer
      大岡山談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] GSp(4)のRapoport-Zink空間のl進コホモロジーの超尖点部分について2021

    • Author(s)
      三枝 洋一
    • Organizer
      代数的整数論とその周辺2021
    • Related Report
      2021 Research-status Report
  • [Remarks] 三枝洋一のウェブサイト

    • URL

      https://www.ms.u-tokyo.ac.jp/~mieda/index-j.html

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report

URL: 

Published: 2019-07-04   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi