• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on limit theorems for random walks on covering graphs

Research Project

Project/Area Number 19K23410
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionShizuoka University (2021-2022)
Ritsumeikan University (2019-2020)

Principal Investigator

Namba Ryuya  静岡大学, 教育学部, 講師 (20843981)

Project Period (FY) 2019-08-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords被覆グラフ / 中心極限定理 / 重複対数の法則 / Edgeworth展開 / ランダムウォーク / 離散幾何解析 / 半群の収束理論 / 多重ゼータ関数 / ベキ零被覆グラフ / 正値線形作用素 / 拡散近似 / 結晶格子 / 多次元多重オイラー積 / 複合ポアソン分布 / エッジワース展開 / 極限定理 / 確率過程
Outline of Research at the Start

本研究では周期性や体積増大度のような幾何学的性質を豊富に有する被覆グラフ上のランダムウォークの極限定理について調べることを目指す。一般にランダムウォークの対称性や確率過程の連続性、被覆変換群の可換性といった良い状況下では確率論、幾何学双方から見て意義のある研究が既に多くある。一方で上記3要素のうちいずれか1つでも欠落すると途端に解析が困難になり、広範な極限定理の世界を覗くことは容易でない。本研究では、「非対称, 不連続, 非可換」をキーワードとし、これらの状況下での極限定理の構築、および極限現象にランダムウォークや被覆グラフの性質が与える影響について, 多角的に研究する。

Outline of Final Research Achievements

I studied limit theorems for random walks on some infinite graphs such as covering graphs, by focusing on the non-symmetry of random walks, the discontinuousness of limiting stochastic processes, and non-commutativity of underling spaces. As a result, I established central limit theorems for non-symmetric random walks on nilpotent covering graphs, together with its Edgeworth expansion. I also consider some problems related to limit theorems for various kinds of random walks. In particular, I have obtained a refinement of the celebrated Trotter's approximation theorem, a partial result on some property of heat kernels on finite graphs, and the long time behavior of the convolution power of the Riemann zeta distribution.

Academic Significance and Societal Importance of the Research Achievements

前研究課題並びに本研究課題の中で、ベキ零被覆グラフ上のランダムウォークの極限定理に関して、中心極限定理や大偏差原理、重複大数の法則などの一連の基本的な結果を示すことができた。これらにより、ベキ零の非可換性をもつ設定における極限定理はよく理解されたと言ってよい状況にまで進展した。さらにTrotterの半群収束定理の改良を行ったことにより、半群の収束が現れる様々な局面で新しい数学の発展が見込めるという点で十分意義のある研究ができたと自負している。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2023 2022 2021 2020 2019

All Journal Article (9 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 2 results) Presentation (14 results) (of which Int'l Joint Research: 3 results,  Invited: 5 results)

  • [Journal Article] Asymptotic behaviors of convolution powers of the Riemann zeta distribution2023

    • Author(s)
      Aoyama Takahiro、Namba Ryuya、Ota Koki
    • Journal Title

      Lithuanian Mathematical Journal

      Volume: 63 Issue: 1 Pages: 1-12

    • DOI

      10.1007/s10986-023-09585-0

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Limit Theorems for Iterates of the Szasz-Mirakyan Operator in Probabilistic View2022

    • Author(s)
      Akahori Jiro、Namba Ryuya、Semba Shunsuke
    • Journal Title

      Journal of Theoretical Probability

      Volume: - Issue: 2 Pages: 1-18

    • DOI

      10.1007/s10959-022-01199-5

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Rate of Convergence in Trotter’s Approximation Theorem and Its Applications2022

    • Author(s)
      Namba Ryuya
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: - Issue: 1 Pages: 1-16

    • DOI

      10.3836/tjm/1502179372

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth2021

    • Author(s)
      Namba Ryuya
    • Journal Title

      Journal of Theoretical Probability

      Volume: - Issue: 3 Pages: 1898-1938

    • DOI

      10.1007/s10959-021-01111-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Monotonic Normalized Heat Diffusion for Regular Bipartite Graphs with Four Eigenvalues2021

    • Author(s)
      Kubo Tasuku、Namba Ryuya
    • Journal Title

      Graphs and Combinatorics

      Volume: 38 Issue: 1

    • DOI

      10.1007/s00373-021-02424-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Laws of the iterated logarithm on covering graphs with groups of polynomial volume growth2021

    • Author(s)
      Namba Ryuya
    • Journal Title

      Forum Mathematicum

      Volume: 33 Issue: 1 Pages: 129-145

    • DOI

      10.1515/forum-2020-0070

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Central limit theorems for non-symmetric random walks on nilpotent covering graphs: Part I2020

    • Author(s)
      Ishiwata Satoshi、Kawabi Hiroshi、Namba Ryuya
    • Journal Title

      Electronic Journal of Probability

      Volume: 25 Issue: none Pages: 1-46

    • DOI

      10.1214/20-ejp486

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Central Limit Theorems for Non-Symmetric Random Walks on Nilpotent Covering Graphs: Part II2020

    • Author(s)
      Ishiwata Satoshi、Kawabi Hiroshi、Namba Ryuya
    • Journal Title

      Potential Analysis

      Volume: online Issue: 1 Pages: 1-40

    • DOI

      10.1007/s11118-020-09851-7

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] CLT for random walks on nilpotent covering graphs with weak asymmetry2019

    • Author(s)
      石渡聡、河備浩司、難波隆弥
    • Journal Title

      数理解析研究所講究録

      Volume: 2116 Pages: 10-19

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Presentation] Trotterの半群収束定理の精密化とその応用2022

    • Author(s)
      難波 隆弥
    • Organizer
      東京確率論セミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] 離散群上のランダムウォークの極限定理2022

    • Author(s)
      難波 隆弥
    • Organizer
      第6回幾何学的群論ワークショップ
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Long-time asymptotics of random walks on covering graphs of polynomial volume growth2021

    • Author(s)
      難波 隆弥
    • Organizer
      立命館幾何セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Long time asymptotics of random walks on covering graphs with groups of polynomial volume growth2021

    • Author(s)
      難波 隆弥
    • Organizer
      東北幾何セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] RWs on covering graphs with groups of polynomial volume growth via discrete geometric analysis2021

    • Author(s)
      難波 隆弥
    • Organizer
      第68回幾何学シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Edgeworth expansions on covering graphs in a geometric view2021

    • Author(s)
      難波 隆弥
    • Organizer
      広島幾何学ワークショップ
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 多次元結晶格子と多重ゼータ関数を結ぶ幾何学的および確率論的性質2020

    • Author(s)
      難波 隆弥
    • Organizer
      名古屋確率論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] CLTs for non-symmetric RWs on nilpotent covering graphs and its relation with a Brownian rough path with a linear drift2020

    • Author(s)
      Satoshi Ishiwata, Hiroshi Kawabi and Ryuya NAMBA
    • Organizer
      Stochastic Analysis Seminar at Imperial College London
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Moderate deviation principles on covering graphs of polynomial volume growth and its applications2019

    • Author(s)
      Ryuya NAMBA
    • Organizer
      阪大確率論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Moderate deviation principles on covering graphs of polynomial volume growth and its applications2019

    • Author(s)
      Ryuya NAMBA
    • Organizer
      東京確率論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Laws of the iterated logarithm on covering graphs of polynomial volume growth2019

    • Author(s)
      Ryuya NAMBA
    • Organizer
      Japanese-German Open Conference on Stochastic Analysis
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Laws of the iterated logarithm on covering graphs of polynomial volume growth2019

    • Author(s)
      Ryuya NAMBA
    • Organizer
      Geometry and Probability
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Laws of the iterated logarithm on covering graphs of polynomial volume growth2019

    • Author(s)
      Ryuya NAMBA
    • Organizer
      関西確率論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Laws of the iterated logarithm on covering graphs of polynomial volume growth2019

    • Author(s)
      Ryuya NAMBA
    • Organizer
      確率論シンポジウム
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-09-03   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi