• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of analysis method for critical problems with logarithmic singularity

Research Project

Project/Area Number 19KK0349
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTohoku University

Principal Investigator

Ioku Norisuke  東北大学, 理学研究科, 准教授 (50624607)

Project Period (FY) 2020 – 2023
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥12,480,000 (Direct Cost: ¥9,600,000、Indirect Cost: ¥2,880,000)
Keywordsスケール不変性 / 対数型特異性 / 劣臨界近似 / 指数型非線形項 / スケール変換 / 特異定常解 / q-指数関数 / 非線形スケール変換 / 凝スケール変換 / q-対数関数 / 臨界問題
Outline of Research at the Start

本研究では,基課題で得たスケール不変則を統合する手法を発展させ,臨界問題を解析する包括的な手法を開発する.そのためには,実解析的手法・幾何解析的な知見の両方が高い水準で必要となる.臨界問題に関する実解析・幾何解析的な研究は伝統的にイタリアで盛んであり,特にFirenze大学,Milano大学が世界を牽引する研究拠点となっている.そこで本国際共同研究ではCianchi氏(Firenze大学),Ruf氏・Terraneo氏(Milano大学)と共同研究を行い,必要な知識・技術の提供を受ける.これにより基課題で得たスケール則を融合し,臨界問題に対する包括的な解析手法を開発する.

Outline of Final Research Achievements

As a critical problem with a logarithmic singularity, I focused on the analysis of semi-linear heat equations and semi-linear elliptic equations with exponential nonlinearity, and the analysis of critical functional inequalities. For the former research, we discovered the model case of nonlinear terms, and developed a new method to reduce the analysis of general nonlinear terms into the model case. Regarding the latter, we succeeded in converting the logarithmic singularity that appears in the critical problem into a limit problem of subcritical problems by using a power approximation called the q-logarithm function, and using this, we showed that the concentration level of the Trudinger--Moser inequality can be regarded as the limit form of the concentration level of Sobolev inequality attained by Talenti's function.

Academic Significance and Societal Importance of the Research Achievements

半線形放物型・楕円型方程式は,これまでは冪乗非線形項といった理想的状況下において研究されることが多かった.冪乗非線形項はそのシンプルな見た目に反して豊富な数学的現象を提起するため,多くの関心を集めて深く理解されている.一方で,複雑なこの世界を理解するためには理想的状況の解析だけでは不十分であることも事実である.一般の指数増大度を持つ非線形項を扱うことを可能にした本研究は学術的・社会的に意義深いと考えられる.また,対数型特異性に対して体系的な研究手法はこれまでに十分に開発されてこなかった.本研究で提案した劣臨界近似法は,他の対数型特異性を伴う臨界問題にも応用可能であるため高い学術的意義を持つ.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (13 results)

All 2024 2023 2022

All Int'l Joint Research (2 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 9 results)

  • [Int'l Joint Research] Firenze大学(イタリア)2022

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Milano大学(イタリア)2022

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Brezis--Van Schaftingen--Yung formula in Orlicz spaces2024

    • Author(s)
      Norisuke Ioku and Kyosuke Shibuya
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 538 Issue: 2 Pages: 128350-128350

    • DOI

      10.1016/j.jmaa.2024.128350

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] $W^{1,p}$ approximation of the Moser--Trudinger inequality2023

    • Author(s)
      M. Hashizume, N. Ioku
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: accepted

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Singular solutions for semilinear elliptic equations with exponential type nonlinearities in 2-d2024

    • Author(s)
      Norisuke Ioku
    • Organizer
      松山解析セミナー
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 指数型非線形項を持つ2次元楕円型方程式の特異解について2024

    • Author(s)
      猪奥倫左
    • Organizer
      HMA 冬の研究会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Singular solutions for semilinear elliptic equations with exponential type nonlinearities in 2-d2023

    • Author(s)
      Norisuke Ioku
    • Organizer
      国際研究集会``Workshop on Elliptic and Parabolic PDEs 2023''
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Non-uniqueness for a critical heat equation in two dimensions with singular data2023

    • Author(s)
      Norisuke Ioku
    • Organizer
      2023 AIMS, SS10, Sharp inequalities and nonlinear differential equations
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 指数型非線形項を持つ熱方程式の解の非一意性2023

    • Author(s)
      猪奥倫左
    • Organizer
      調和解析セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Non-uniqueness for a critical heat equation in two dimensions with singular data2023

    • Author(s)
      猪奥倫左
    • Organizer
      応用数学セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] $W^{1,p}$ approximation of the Moser--Trudinger inequality2023

    • Author(s)
      N. Ioku
    • Organizer
      Analysis seminar, Firenze University
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Solvability of a semilinear heat equation via quasi scale invariance2023

    • Author(s)
      N. Ioku
    • Organizer
      EACDFM
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] $W^{1,p}$ approximation of the Moser--Trudinger inequality2022

    • Author(s)
      N. Ioku
    • Organizer
      Analysis seminar, Milano University
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2020-02-06   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi