Co-Investigator(Kenkyū-buntansha) |
GOTO Ryushi 大阪大学, 大学院理学研究科, 教授 (30252571)
UMEHARA Masaaki 東京工業大学, 大学院情報理工学研究科, 教授 (90193945)
SASAKI Takeshi 神戸大学, 大学院理学研究科, 名誉教授 (00022682)
NAKAGAWA Yasuhiro 佐賀大学, 大学院工学系研究科, 教授 (90250662)
HASEGAWA Keizo 新潟大学, 人文社会教育科学系, 教授 (00208480)
|
Budget Amount *help |
¥38,740,000 (Direct Cost: ¥29,800,000、Indirect Cost: ¥8,940,000)
Fiscal Year 2012: ¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
Fiscal Year 2011: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
Fiscal Year 2010: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
Fiscal Year 2009: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
Fiscal Year 2008: ¥9,750,000 (Direct Cost: ¥7,500,000、Indirect Cost: ¥2,250,000)
|
Research Abstract |
(1) In a joint work (Tohoku Math. J., 65, 2013, 243-252) with Y. Nakagawa, we generalized Sakane-Koiso's construction of Kaehler-Einstein metrics to the Kaehler-Ricci soliton case where the Futaki invariant is non-vanishing. In this case, we obtain Sasaki-Einstein metrics in place of Kaehler-Einstein metrics. (2) For the Kaehler-Einstein metric on the blowing-up of the complex projective plane at 3 non-colinear points, its detailed description was obtained by asymptotic expansion of the solution of a hyperbolic affine sphere equation on a bounded domain in the real 2-plane (AMS/IP Stud. Adv. Math. 48, 219-229). (3) As to the Donaldson-Tian-Yau Conjecture, we proved: i) Asymptotic relative Chow stability implies the existence of a sequence of polybalanced metrics (Osaka J. Math. 48, 2011, 845-856); ii) strong relative K-stability implies asymptotic relative Chow stability (joint work with Y.Nitta).
|