Study on the multiplicities and minimal free resolutions of Stanley-Reisner rings
Project/Area Number |
20540047
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Saga University |
Principal Investigator |
TERAI Naoki Saga University, 文化教育学部, 准教授 (90259862)
|
Co-Investigator(Kenkyū-buntansha) |
UEHARA Tsuyoshi 佐賀大学, 工学系研究科, 教授 (80093970)
ICHIKAWA Takashi 佐賀大学, 工学系研究科, 教授 (20201923)
MIYAZAKI Chikashi 佐賀大学, 工学系研究科, 教授 (90229831)
KAWAI Shigeo 佐賀大学, 文化教育学部, 教授 (30186043)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2010: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2009: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2008: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | Stanley-Reisner環 / Cohen-Macaulay環 / 極小自由分解 / 重複度 / 形式べき / Cohen-Macaulay / エッジイデアル |
Research Abstract |
We studied Stanly-Reisner ideals, which are squarefree monomial ideals in polynomial rings. As a result we have proved that any powers areCohen-Macaulay if a certain m-th power of a Stanley-Reisner ideal is Cohen-Macaulay, where m is more than two. In this case the original ideal is a complete intersection. This is a refinement of the Cowsik-Nori theorem in the case of monomial ideals.
|
Report
(4 results)
Research Products
(35 results)