Optimal mass transport on Alexandrov spaces and Ricci curvature
Project/Area Number |
20540058
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Tohoku University |
Principal Investigator |
SHIOYA Takashi 東北大学, 大学院・理学研究科, 教授 (90235507)
|
Co-Investigator(Renkei-kenkyūsha) |
KUWAE Kazuhiro 熊本大学, 大学院・自然科学研究科, 教授 (80243814)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2009: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2008: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 幾何学 / 測度距離空間 / 分割定理 / 体積の比較 / 測度集中 / ラプラシアン / ビジョップ・グロモフの定理 / ラプラシアンの比較定理 / デイリクレ形式 |
Research Abstract |
We prove that given an Alexandrov space and a positive Radon measure on it, if the measure satisfies a comparison condition of Bishop-Gromov type and if the space contains a straight line, then the space is homeomorphic to the direct product of some space and the real line. This is a generalization of the Cheeger-Gromall splitting theorem. As another result, given a sequence of closed Riemannian manifolds of nonnegative Ricci curvature and with a uniform upper bound of diameter, if the k-th eigenvalue of the Laplacian of the manifold in the sequence is divergent to infinity, then the first eigenvalue is also divergent and the measure concentration happens.
|
Report
(4 results)
Research Products
(31 results)