• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classification of quasi-periodic structure with local configurations of Archimedes tiling

Research Project

Project/Area Number 20540119
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKochi University

Principal Investigator

KOMATSU Kazushi  Kochi University, 教育研究部・自然科学系, 准教授 (00253336)

Co-Investigator(Kenkyū-buntansha) AKIYAMA Shigeki  新潟大学, 自然科学系, 准教授 (60212445)
GOTO Satoru  国際医療福祉大学, 薬学部, 准教授 (50253232)
KATO Kazuhisa  高知大学, 教育研究部自然科学系, 教授 (20036578)
NOMAKUCHI Kentaro  高知大学, 教育研究部自然科学系, 教授 (60124806)
Co-Investigator(Renkei-kenkyūsha) NAKANO Fumihiko  学習院大学, 理学部, 教授 (10291246)
Project Period (FY) 2008 – 2010
Project Status Completed (Fiscal Year 2010)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords準周期タイリング / 数理モデル / 配置空間 / 非周期 / タイリング / 非周期性 / 準結晶 / 環状拡大 / 自己相似性 / 力学系 / substitution rul / substitution rule / 準周期性 / フラクタル / フックス群
Research Abstract

We study details of local configurations around vertices of non-periodic tilings. We can construct an uncountable family of non-periodic tilings with 7-fold rotational symmetry which have just three kinds of local configurations around vertices in Archimedean tilings. These non-periodic tilings have singular local configurations around vertices. The Danzer tiling with 7-fold rotational symmetry has a singular local configurations around vertices. This implies that the Danzer tiling with 7-fold rotational symmetry cannot be obtained as a limit of sequence of canonical tilings.

Report

(4 results)
  • 2010 Annual Research Report   Final Research Report ( PDF )
  • 2009 Annual Research Report
  • 2008 Annual Research Report
  • Research Products

    (19 results)

All 2011 2010 2009 2008

All Journal Article (6 results) (of which Peer Reviewed: 4 results) Presentation (12 results) Book (1 results)

  • [Journal Article] Some observations on a substitution rule with singular vertex configurations2011

    • Author(s)
      林浩子, 小松和志
    • Journal Title

      Research Institute for Mathematical Science Kokyuroku Vol.1725

      Pages: 125-130

    • Related Report
      2010 Final Research Report
  • [Journal Article] Some observations on a substitution rule with singular vertex configurations2011

    • Author(s)
      Hayashi, H., Komatsu, K.
    • Journal Title

      Research Institute for Mathematical Science Kokyuroku

      Volume: 1725 Pages: 125-130

    • Related Report
      2010 Annual Research Report
  • [Journal Article] A substitution rule for the Penrose tiling2008

    • Author(s)
      小松和志, 中野史彦
    • Journal Title

      Nihonkai Math.J. Vol.19

      Pages: 111-135

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] Remarks on 2-dimensional quasiperiodic tilings with rotational symmetries2008

    • Author(s)
      加藤和久, 小松和志, 中野史彦, 野間口謙太郎, 山内昌哲
    • Journal Title

      Hiroshima Math.J. Vol.38

      Pages: 385-395

    • NAID

      110006958253

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] A substitution rule for the Penrose tiling2008

    • Author(s)
      K. Komatsu, F. Nakano
    • Journal Title

      Nihonkai Math. J. 19

      Pages: 111-135

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Remarks on 2-dimensional quasiperiodic tilings with rotational symmetries2008

    • Author(s)
      K. Kato, K. Komatsu, F. Nakano, K. Nomakuchi, M. Yamauchi
    • Journal Title

      Hiroshima Math. J. 38

      Pages: 385-395

    • NAID

      110006958253

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Presentation] Some observations on a substitution rule with singular vertex atlases2010

    • Author(s)
      林浩子, 小松和志
    • Organizer
      Mathematics of quasi-periodic order
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2010-06-22
    • Related Report
      2010 Final Research Report
  • [Presentation] Notes on vertex atlas of planar Danzer tiling2009

    • Author(s)
      林浩子, 小松和志, 中野史彦
    • Organizer
      The 7th Japan Conference on Computational Geometry and Graphs
    • Place of Presentation
      金沢市文化ホール
    • Year and Date
      2009-11-11
    • Related Report
      2010 Final Research Report
  • [Presentation] Notes on vertex atlas of planar Danzer tiling II2009

    • Author(s)
      林浩子, 小松和志, 中野史彦
    • Organizer
      高知タイル貼り小研究集会2009
    • Place of Presentation
      高知大学
    • Year and Date
      2009-10-26
    • Related Report
      2010 Final Research Report
  • [Presentation] Remarks on 2-dimensional quasiperiodic tilings with rotational symmetries II2009

    • Author(s)
      山内昌哲, 小松和志
    • Organizer
      高知タイル貼り小研究集会2009
    • Place of Presentation
      高知大学
    • Year and Date
      2009-10-26
    • Related Report
      2010 Final Research Report
  • [Presentation] Substitution Ruleから得られるタイリング2008

    • Author(s)
      小松和志, 中野史彦
    • Organizer
      射影法から見た準周期構造と関連する話題
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2008-10-02
    • Related Report
      2010 Final Research Report
  • [Presentation] 射影法入門II2008

    • Author(s)
      小松和志
    • Organizer
      射影法から見た準周期構造と関連する話題
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2008-10-02
    • Related Report
      2010 Final Research Report
  • [Presentation] Substitution Rule から得られるタイリング2008

    • Author(s)
      小松和志
    • Organizer
      射影法から見た準周期構造と関連する話題
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2008-10-02
    • Related Report
      2008 Annual Research Report
  • [Presentation] 射影法入門I2008

    • Author(s)
      小松和志
    • Organizer
      射影法から見た準周期構造と関連する話題
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2008-10-01
    • Related Report
      2010 Final Research Report
  • [Presentation] 環状化合物がとることができる立体構造の配置空間(1)配置空間の数理モデルである多様体のトポロジー2008

    • Author(s)
      小松和志
    • Organizer
      日本コンピュータ化学会2008秋季年会
    • Place of Presentation
      高知大学
    • Year and Date
      2008-09-28
    • Related Report
      2010 Final Research Report
  • [Presentation] 射影法から導かれる区間の両側分割2008

    • Author(s)
      林浩子, 小松和志
    • Organizer
      小研究集会:準周期タイリング及びその関連する話題
    • Place of Presentation
      高知大学
    • Year and Date
      2008-06-20
    • Related Report
      2010 Final Research Report
  • [Presentation] 環状分子の立体構造の配置空間のトポロジー(分割という視点から)2008

    • Author(s)
      小松和志
    • Organizer
      射影法から導かれる区間の両側分割
    • Place of Presentation
      高知大学
    • Year and Date
      2008-06-20
    • Related Report
      2010 Final Research Report
  • [Presentation] 射影法入門I, II2008

    • Author(s)
      小松和志
    • Organizer
      射影法から見た準周期構造と関連する話題
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2008 Annual Research Report
  • [Book] トポロジーデザイニング-新しい幾何学からはじめる物質・材料設計-2009

    • Author(s)
      小松和志, 他
    • Publisher
      エヌー・テイー・エス出版
    • Related Report
      2010 Final Research Report

URL: 

Published: 2008-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi