DIVISORS AND MEROMORPHIC CONVEXITY IN A STEIN SPACE
Project/Area Number |
20540180
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Kumamoto University |
Principal Investigator |
ABE Makoto Kumamoto University, 大学院・生命科学研究部, 准教授 (90159442)
|
Co-Investigator(Kenkyū-buntansha) |
SHIMA Tadashi 広島大学, 大学院・工学研究院, 准教授 (30226196)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2010: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2009: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2008: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 複素解析 / 複素空間 / シュタイン空間 / シュタイン多様体 / 有理型凸性 / 岡・グラウエルトの原理 / 強い円板的性質 / 有理型近似定理 / カルチエ因子 / ピカール群 |
Research Abstract |
A Stein space is a mathematical object on which there exist sufficiently many holomorphic functions. A pseudoconvex domain in the space Cn of the n-tuples of compex numbers is a typical example of a Stein space. In this course of studies, related to the meromorphic convexity and divisors, some new results are obtained on the generalized meromorphic approximation theorem in a Stein space, on the local Steinness of a domain in a Stein orbifold satisfying the Oka-Grauert principle, and on the relation between the strong disk property and the Rungeness.
|
Report
(4 results)
Research Products
(32 results)