• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on cycles of intermediate dimensions on toric varieties

Research Project

Project/Area Number 20740026
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionGifu Shotoku Gakuen University

Principal Investigator

SATO Hiroshi  Gifu Shotoku Gakuen University, 経済情報学部, 准教授 (20433310)

Project Period (FY) 2008 – 2010
Project Status Completed (Fiscal Year 2011)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2009: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2008: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords代数学 / 幾何学 / トーリック多様体 / ファノ多様体 / 森理論 / トーリック様体 / 双有理幾何学 / 導来圏 / 2-サイクル
Research Abstract

In this research, we mainly studied two-cycles on smooth projective toric varieties. Our main purpose is to construct a similar theory to the toric Mori theory for two-cycles, and as a result, we obtained a method to describe two-cycles combinatorially by using the data of the corresponding fan. Moreover, we investigated cones of effective two-cycles on toric varieties, and obtained the classification of toric varieties whose second Chern character is non-negative for certain special cases. In connection with this research, we obtained some results about the ordinary toric Mori theory.

Report

(5 results)
  • 2010 Annual Research Report   Self-evaluation Report ( PDF )   Final Research Report ( PDF )
  • 2009 Annual Research Report
  • 2008 Annual Research Report
  • Research Products

    (26 results)

All 2012 2011 2010 2009 2008

All Journal Article (9 results) (of which Peer Reviewed: 4 results) Presentation (17 results)

  • [Journal Article] The numerical class of a surface on a toric manifold2012

    • Author(s)
      H. Sato
    • Journal Title

      Int. J. Math. Math. Sci

      Volume: 2012 Pages: 9-9

    • DOI

      10.1155/2012/536475

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] Smooth projective toric varieties whose nontrivial nef line bundles are big2009

    • Author(s)
      O. Fujino and H. Sato
    • Journal Title

      Proc. Japan Acad. Ser. A Math. Sci

      Volume: 85 Pages: 89-94

    • NAID

      40016671765

    • Related Report
      2010 Final Research Report
  • [Journal Article] Three-dimensional terminal toric flips2009

    • Author(s)
      O. Fujino, H. Sato, Y. Takano and H. Uehara
    • Journal Title

      Cent. Eur. J. Math

      Volume: 7 Pages: 46-53

    • Related Report
      2010 Final Research Report
  • [Journal Article] Smooth projective toric varieties whose nontrivial nef line bundles are big2009

    • Author(s)
      TO.Fujino , H.Sato
    • Journal Title

      Proc.Japan Acad.Ser.AMath.Sci. 85

      Pages: 89-94

    • NAID

      40016671765

    • Related Report
      2010 Self-evaluation Report
  • [Journal Article] Three-dimensional toricmorphisms with anti-nef canonical divisors2009

    • Author(s)
      O H.Sato
    • Journal Title

      Comm.Alg. 37

      Pages: 2325-2336

    • Related Report
      2010 Self-evaluation Report
  • [Journal Article] Three-dimensional terminal toric flips2009

    • Author(s)
      O.Fujino, H.Sato, Y.Takano, H.Uehara
    • Journal Title

      Cent.Eur.J.Math. 7

      Pages: 46-53

    • Related Report
      2010 Self-evaluation Report
  • [Journal Article] Smooth projective toric varieties whose nontrivial nef line bundles are big2009

    • Author(s)
      Osamu Fujino, Hiroshi Sato
    • Journal Title

      Proc.Japan Acad.Ser.A Math.Sci. 85

      Pages: 89-94

    • NAID

      40016671765

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Three-dimensional toric morphisms with anti-nef canonical divisors2009

    • Author(s)
      Hiroshi Sato
    • Journal Title

      Comm.Alg. 37

      Pages: 2325-2336

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Three-dimensional terminal toric flips2009

    • Author(s)
      O. Fujino, H. Sato, Y. Takano and H. Uehara
    • Journal Title

      Cent. Eur. J. Math 7

      Pages: 46-53

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Presentation] Toric manifolds whose Chern characters are non-negative2011

    • Author(s)
      H. Sato
    • Organizer
      International Conference "Toric Topology and Automorphic Functions"
    • Place of Presentation
      Pacific National University, Khabarovsk, Russia
    • Related Report
      2010 Final Research Report
  • [Presentation] On the classification of toric 2-Fano manifolds2011

    • Author(s)
      H. Sato
    • Organizer
      研究集会「特異点論とそのひろがり」
    • Place of Presentation
      京都大学理学部
    • Related Report
      2010 Final Research Report
  • [Presentation] Toric Fano manifolds with non-negative second Chern characters2011

    • Author(s)
      H. Sato
    • Organizer
      代数幾何学研究集会-ファノ多様体と正標数上の話題を中心として-
    • Place of Presentation
      九州大学数理学研究院
    • Related Report
      2010 Final Research Report
  • [Presentation] Toric Fano manifolds with non-negative second Chern characters2011

    • Author(s)
      佐藤拓
    • Organizer
      九州大学数理学研究院, 代数幾何学研究集会-ファノ多様体と正標数上の話題を中心として
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Cones of effective two-cycles on toric manifolds2010

    • Author(s)
      佐藤拓
    • Organizer
      The International Conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS"
    • Place of Presentation
      Steklov Mathematical Institute (Moscow)
    • Year and Date
      2010-08-19
    • Related Report
      2010 Annual Research Report
  • [Presentation] Toric Mori theory and Fano manifolds I, II, III, IV2010

    • Author(s)
      H. Sato
    • Organizer
      Toric Topology with applications in combinatorics
    • Place of Presentation
      大阪市立大学理学部数学教室
    • Related Report
      2010 Final Research Report
  • [Presentation] Cones of effective two-cycles on toric manifolds, Steklov Mathematical Institute of RAS and Moscow State University2010

    • Author(s)
      H. Sato
    • Organizer
      The International Conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS''
    • Place of Presentation
      Steklov Mathematical Institute of RAS and Moscow State University
    • Related Report
      2010 Final Research Report
  • [Presentation] Three-dimensional toric morphisms with anti-nef canonical divisors2010

    • Author(s)
      H. Sato
    • Organizer
      アフィン代数幾何学研究集会
    • Place of Presentation
      関西学院大学大阪梅田キャンパス
    • Related Report
      2010 Final Research Report
  • [Presentation] Toric Mori theory and Fanomanifolds I, II, III, IV(四回連続講演)2010

    • Author(s)
      H.Sato
    • Organizer
      Toric Topology with applications in combinatorics
    • Place of Presentation
      大阪市立大学理学部数学教室
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Cones of effective two-cycleson toric manifolds, SteklovMathematical Institute of RAS and Moscow State University2010

    • Author(s)
      H.Sato
    • Organizer
      The International Conference GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Three-dimensional toric morphisms with anti-nef canonical divisors2010

    • Author(s)
      佐藤拓
    • Organizer
      関西学院大学大阪梅田キャンパス, アフィン代数幾何学研究集会
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Two-cycles on toric Fano manifolds2009

    • Author(s)
      H. Sato
    • Organizer
      東北復旦代数幾何合同シンポジウム
    • Place of Presentation
      東北大学大学院理学研究科
    • Related Report
      2010 Final Research Report 2009 Annual Research Report
  • [Presentation] On the classification of toric higher Fano manifolds2009

    • Author(s)
      H. Sato
    • Organizer
      研究集会「代数幾何の関連する諸分野」
    • Place of Presentation
      北海道大学大学院理学研究科
    • Related Report
      2010 Final Research Report
  • [Presentation] Two-cycles on toric Fanomanifolds2009

    • Author(s)
      H.Sato
    • Organizer
      東北復旦代数幾何合同シンポジウム
    • Place of Presentation
      東北大学大学院理学研究科
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] トーリック多様体上の中間次元サイクル2008

    • Author(s)
      佐藤拓
    • Organizer
      研究集会射影多様体の幾何とその周辺2008
    • Place of Presentation
      高知大学理学部
    • Year and Date
      2008-11-01
    • Related Report
      2008 Annual Research Report
  • [Presentation] トーリック多様体上の中間次元サイクル2008

    • Author(s)
      H. Sato
    • Organizer
      研究集会「射影多様体の幾何とその周辺2008」
    • Place of Presentation
      高知大学理学部
    • Related Report
      2010 Self-evaluation Report 2010 Final Research Report
  • [Presentation] トーリック多様体上の中間次元サイクル2008

    • Author(s)
      H. Sato
    • Organizer
      研究集会「代数幾何の関連する諸分野」
    • Place of Presentation
      北海道大学大学院理学研究科
    • Related Report
      2010 Self-evaluation Report 2010 Final Research Report

URL: 

Published: 2008-04-01   Modified: 2017-05-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi