On well-posedness of the Cauchy problem to Schrodinger maps in the energy space
Project/Area Number |
20740073
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Basic analysis
|
Research Institution | Nagoya University |
Principal Investigator |
KATO Jun 名古屋大学, 多元数理科学研究科, 准教授 (00432237)
|
Project Period (FY) |
2008 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 関数方程式 / 調和写像分散流 / シュレディンガー写像 / ストリッカーツ評価 / 非線型偏微分方程式論 / シュレディンガー方程式 / 関数方程式論 / 実関数論 / 数理物理 / 磁性 |
Research Abstract |
We consider the well-posedness of the Cauchy problem to Schrodinger maps. In the process of study, we proved endpoint Strichartz estimates for the Schrodinger and Klein-Gordon equation adding angular regularity.
|
Report
(6 results)
Research Products
(25 results)