• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on stochastic analysis and problems in infinite dimensional analysis

Research Project

Project/Area Number 20H01804
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionThe University of Tokyo

Principal Investigator

Aida Shigeki  東京大学, 大学院数理科学研究科, 教授 (90222455)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
Fiscal Year 2023: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords確率微分方程式 / ラフパス / 無限次元解析 / 対数ソボレフ不等式 / 漸近誤差分布 / 反射壁確率過程 / 確率解析 / 無限次元空間 / 準古典極限 / 解の近似 / 4次モーメント定理 / マリアバン解析 / 近似誤差 / 多次元ヤング積分
Outline of Research at the Start

本研究では, (1) ループ空間や場の量子論に現れる2階偏微分作用素と関連事項の研究,(2) 確率微分方程式やラフパスで駆動された微分方程式(RDE)の解の研究を行うことを目的としている. (1) に関しては, 大偏差原理, 対数ソボレフ不等式, ラフパス解析による局所解析を組み合わせて解析を行ってきた. これをさらに押し進めるとともに, 特にループ空間の場合に(ループ空間の)リーマン計量を変更した新しいモデルの解析を進めたいと考えている.(2)に関しては, 従来のラフパス理論ではまだカバー出来ていない, 経路依存や反射壁のRDE
の解析や近似誤差分布解析を進めることを考えている.

Outline of Final Research Achievements

(1) We introduce a class of rough differential equations containing path-dependent bounded variation terms and prove the existence of solutions, a priori estimate of solutions, and support theorems. (2) We study asymptotic error distribution process of RDEs driven by fractional Brownian motion with the Hurst parameter H (1/3<H<1/2) for several approximation schemes.This is a joint work with Nobuaki Naganuma and we are preparing the manuscript.(3) We determine the semiclassical limit of the spectrum of Ornstein-Uhlenbeck operator with the Dirichlet boundary condition on a domain of the pinned path space of the compact Lie group by using the information of the hessian of the energy function of the path. This is an infinite dimensional analogue of finite dimensional result. We are preparing the manuscript.

Academic Significance and Societal Importance of the Research Achievements

(1) これまでのRDEやその拡張に当たる正則構造理論では取り扱うことができなかった経路依存項を含んだRDEを定式化し、解の存在やアプリオリ評価を示したことにより、
部分的であるが、反射壁SDEや最大・最小過程を含んだよく知られたSDEへのラフパスによる応用が可能になったのは学術的な意義がある。(2) 先行研究では、近似誤差の弱収束のみを論じていたが、本研究では、剰余項のL^pノルムの評価を与えている点で進んだ結果になっている。(3)無限次元では、最小固有値と第2固有値の漸近挙動の研究が主であったが、本研究では、それ以外の固有値の漸近挙動を決定している点が新しい点である。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (8 results)

All 2024 2023 2022 2020 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results) Remarks (1 results)

  • [Journal Article] Rough differential equations containing path-dependent bounded variation terms2024

    • Author(s)
      Shigeki Aida
    • Journal Title

      Journal of Theoretical Probability

      Volume: - Issue: 3 Pages: 2130-2183

    • DOI

      10.1007/s10959-024-01319-3

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Error analysis for approximations to one-dimensional SDEs via the perturbation method2020

    • Author(s)
      Shigeki Aida and Nobuaki Naganuma
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 57 Pages: 381-424

    • NAID

      120006846164

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Presentation] An approach to asymptotic error distributions of rough differential equations2023

    • Author(s)
      Shigeki Aida
    • Organizer
      Stochastic Analysis
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotics of lowlying Dirichlet eigenvalues of Witten Laplacians on domains in pinned path groups2023

    • Author(s)
      Shigeki Aida
    • Organizer
      Stochastic Analysis
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotics of lowlying Dirichlet eigenvalues of Witten Laplacians on domains in pinned path groups2023

    • Author(s)
      Shigeki Aida
    • Organizer
      慶應確率論ワークショップ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] An approach to asymptotic error distributions of rough differential equations2022

    • Author(s)
      Shigeki Aida
    • Organizer
      Stochastic analysis and applications, Open Japanese-German conference
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An approach to asymptotic error distributions of rough differential equations2022

    • Author(s)
      Shigeki Aida
    • Organizer
      Stochastic analysis and related fields
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Remarks] 会田茂樹のページ

    • URL

      https://www.ms.u-tokyo.ac.jp/~aida/index-j.html

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi