Project/Area Number |
20H02117
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 20020:Robotics and intelligent system-related
|
Research Institution | Yamaguchi University |
Principal Investigator |
Nakahara Tasuku 山口大学, 大学院創成科学研究科, 准教授 (00756968)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,590,000 (Direct Cost: ¥14,300,000、Indirect Cost: ¥4,290,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥16,120,000 (Direct Cost: ¥12,400,000、Indirect Cost: ¥3,720,000)
|
Keywords | キネシン / 微小管 / MicroTAS / BioMEMS / 表面粗さ / MEMS |
Outline of Research at the Start |
近年、生体分子モータのキネシンと細胞骨格の微小管による運動系(微小管運動)をナノスケールの輸送体として応用する研究が行われている。研究代表者は微小管運動の受動的な速度制御方法として、表面粗さ構造の利用に着目した。本研究では表面粗さ構造に対する微小管運動の特性変化のメカニズムを明らかにするとともに、その特性を利用した受動的な分子濃縮システムを開発することが目的である。提案する制御技術の有用性を実証できれば、微小管運動を用いる学術分野への波及効果が期待でき、分子スケールの輸送を必要とするマイクロ化学チップ等への発展性を示すことができると考える。
|
Outline of Final Research Achievements |
In this study, we fabricated a stepwise surface roughness structure to observe a gliding microtubule continuously for investigating change of characteristics in gliding microtubule on the surface roughness. The motility assay of gliding microtubules were constructed on the fabricated structure. The observed results showed the gliding speed of microtubule was decreased with increase of surface roughness. The stopped microtubules were increased with increase of surface roughness. In addition, a part of gliding microtubules moved over the step on the step-wise structure. To demonstrate a utility as nano transport system by gliding microtubules using the surface roughness structure, quantitative evaluations for a specific application such as concentration or separation of target molecules would be required.
|
Academic Significance and Societal Importance of the Research Achievements |
微小管運動の制御方法について、これまでに多くの方法が提案されてきたが、予め製作しておいた構造によって受動的に速度を制御する方法は極めて少なく、ナノスケールの表面粗さ構造に対する運動特性の詳細なメカニズムについては明らかにされていなかった。本研究では、微小管の移動速度および停止や剥離といった挙動が表面粗さの大きさによって変化することを観測した。また、階段状構造の段差を越えて運動を継続する微小管を一部で観察したことから、粗さ構造を用いた微小管運動によるナノ輸送システムの実現に向けて、基礎的な知見が得られたと考えられる。
|