Project/Area Number |
20H02811
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | Kyoto University |
Principal Investigator |
Miki Koji 京都大学, 工学研究科, 准教授 (60422979)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2022: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2021: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2020: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
|
Keywords | 光音響 / フタロシアニン / 刺激応答性 / 造影剤 / 腫瘍 / イメージング / 近赤外色素 / 光増感 / 光熱変換 / 光増感剤 / セラノスティクス |
Outline of Research at the Start |
光照射を用いるがんの可視化と治療は、患者への負担が小さいことから重要な医学的手法として注目されている。本課題では光照射エネルギーを効率良く熱として放出できる近赤外色素材料の開発を目指す。色素の凝集状態を制御することで、効率良く光熱変換できる材料を創製し、光音響撮像法と光熱療法、光免疫療法を利用した腫瘍の可視化と治療に資する光増感剤を開発する。また、腫瘍近傍の特殊な環境を識別し、腫瘍組織でのみ効率良く光増感能を示す機能性材料の創製も目指す。
|
Outline of Final Research Achievements |
At the beginning of the project, phthalocyanine aggregation-induced enhancement of photoacoustic signal for high-contrast tumor detection was proposed. During the study, we discovered two contrast agents whose photoacoustic signal can be activated by either protease overexpressed in tumor tissues or less-invasive near-infrared photoirradiation. In the former case, protease leads to the removal of axial ligand of phthalocyanine dye whish induces aggregation of dyes, thereby increasing photoacoustic signal. This indicates that we successfully developed the target molecule. We also prepared photo-responsive phthalocyanine-based turn-on photoacoustic probe. In near future, we will check the biocompatibility of probes for further application.
|
Academic Significance and Societal Importance of the Research Achievements |
本課題では、腫瘍近傍で過剰発現する酵素や外部からの光照射など刺激に応答し光音響信号を増大させる造影剤の開発に取り組んだ。これまでに報告されている造影剤は常に光音響信号を発するものが多く、体内を循環している間に血管や正常組織に滞留する造影剤から発せられる信号が問題となっていたが、開発した刺激応答性造影剤は次世代機能性造影剤として機能することが確信される。人体に適応できるかどうか確認し早急に実用化することが次の課題であるが、副作用を大きく軽減できる造影剤開発の一歩となる成果である。
|