• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24

Research Project

Project/Area Number 20K03505
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionFukuoka University (2023)
Tohoku University (2020-2022)

Principal Investigator

Shimakura Hiroki  福岡大学, 理学部, 教授 (90399791)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords代数学 / 頂点作用素代数 / 正則頂点作用素代数 / 自己同型群 / リーチ格子 / リー代数 / 格子頂点作用素代数 / 軌道体 / 二次形式 / 格子
Outline of Research at the Start

頂点作用素代数の研究における長年の未解決問題の一つ「中心電荷24の正則頂点作用素代数の分類」は 2018年までに概ね完了した。しかしながら、個別の証明を合わせて得られた結果であり、全体の状況が十分に理解されているとは言いがたい状況である。

本研究の目的は、中心電荷24の正則頂点作用素代数の統一的な構成を行い、その応用として、これら頂点作用素代数の自己同型群を決定することである。本研究の達成によって、中心電荷24の正則頂点作用素代数の分類結果への新しい着眼点が得られると共に、これら頂点作用素代数の対称性を基にした新たな研究課題の創設へ繋がる。

Outline of Final Research Achievements

The classification of holomorphic vertex operator algebras of central charge 24 are done by case-by-case analysis except for the characterization of the moonshine vertex operator algebra. Hence a uniform proof for the classification is expected.
In this research project, we give a uniform construction and classificaiton of holomorphic vertex operator algebras of central charge 24 except for the characterization of the moonshine vertex operator algebra. As an application, we determine their automorphism groups. In order to do so, we forcus on some sublattices of the Leech lattice and determine the automorphism groups of the orbifolds of the associated lattice vertex operator algebras.

Academic Significance and Societal Importance of the Research Achievements

中心電荷24の正則頂点作用素代数の分類問題は、数理物理学における2次元共形場理論のある種の分類問題に対応しており、作用素環論などの他の数学分野でも注目されている問題であった。したがって、この問題への新しい解決法が与える影響は大きい。本研究成果はすでにいくつかの数理物理学等の研究で応用されている。また、自己同型群の群構造や正則頂点作用素代数の記述を通じて、有限群論や組合せ論への繋がりも見つかった。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (15 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (8 results) Journal Article (5 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] Academia Sinica(台湾)(その他の国・地域)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Academia Sinica (台湾)(その他の国・地域)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] 華東師範大学(中国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Academia Sinica (台湾)(その他の国・地域(台湾))

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] 華東師範大学(中国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Academia Sinica (台湾)(その他の国・地域(台湾))

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Universidade Federal Fluminense(ブラジル)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Rutgers University(米国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Extra automorphisms of cyclic orbifolds of lattice vertex operator algebras2024

    • Author(s)
      Lam Ching Hung, Shimakura Hiroki
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 228 Issue: 2 Pages: 107454-107454

    • DOI

      10.1016/j.jpaa.2023.107454

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Vertex operator algebras with positive central charges whose dimensions of weight one spaces are 8 and 162023

    • Author(s)
      Jiao Xiangyu、Nagatomo Kiyokazu、Sakai Yuichi、Shimakura Hiroki
    • Journal Title

      Journal of Algebra

      Volume: 614 Pages: 330-361

    • DOI

      10.1016/j.jalgebra.2022.10.001

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Automorphism Groups and Uniqueness of Holomorphic Vertex Operator Algebras of Central Charge 242022

    • Author(s)
      Betsumiya Koichi、Lam Ching Hung、Shimakura Hiroki
    • Journal Title

      Communications in Mathematical Physics

      Volume: 印刷中 Issue: 3 Pages: 1773-1810

    • DOI

      10.1007/s00220-022-04585-6

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Automorphism groups of cyclic orbifold vertex operator algebras associated with the Leech lattice and some non-prime isometries2022

    • Author(s)
      K. Betsumiya, C.H. Lam, H. Shimakura
    • Journal Title

      Israel Journal of Mathematics

      Volume: 印刷中

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Schellekens' list and the very strange formula2021

    • Author(s)
      van Ekeren Jethro、Lam Ching Hung、Moller Sven、Shimakura Hiroki
    • Journal Title

      Advances in Mathematics

      Volume: 380 Pages: 107567-107567

    • DOI

      10.1016/j.aim.2021.107567

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Automorphism groups of holomorphic vertex operator algebras of central charge 242022

    • Author(s)
      H. Shimakura
    • Organizer
      Conference in finite groups and vertex algebras
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Extra automorphisms of cyclic orbifolds of lattice vertex operator algebras2022

    • Author(s)
      島倉裕樹
    • Organizer
      第 38 回代数的組合せ論シンポジウム
    • Related Report
      2022 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi