• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

the rationality problem for fields of invariants

Research Project

Project/Area Number 20K03511
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto University

Principal Investigator

Yamasaki Aiichi  京都大学, 理学研究科, 准教授 (10283590)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords数論 / 代数幾何 / 計算数学 / 有理性問題 / Hasseノルム原理 / ノルム1トーラス / ハッセノルム原理 / 代数的トーラス / 双有理同値 / flabby resolution / Hasseの原理 / 計算機代数 / 近似定理 / 有限群の作用による不変体 / 不分岐コホモロジー
Outline of Research at the Start

有限群の作用による不変体の具体的な有理性問題を、代数幾何的手法や計算機をも用いつつ主に数論的手法を用いて研究する。当該研究分野を開発したのは主にJ-P.Serre 氏,D.Saltman 氏,J.-L. Colliot-Thelene 氏であるが、それらの数学を発展させることを目指す。
本研究で開発したアルゴリズムはホームページ上に公開し、いつでも無料でダウンロードして使用できるようにする。

Outline of Final Research Achievements

(1)This is a joint work with Hoshi Akinari at Niigat University and Kanai Kazuki at Kure College. Let k be a number field,K/k be an extension of degree at most 15, we determined a necessary and sufficient condition for the Hasse norm principle for K/k.
(2)This is a joint work with Hoshi Akinari at Niigata University and Sumito Hasegawa. Let K/k be an extension of degree at most 15. We determined a complete answer to the rationality problem up to stable k-equivalence for norm one tori $R_{K/k}^{(1)}(G_m)$ of K/k.
(3)This is a joint work with Hoshi Akinari at Niigata University. We determined a complete answer to the rationality problem up to stable k-equivalence for norm one tori $R_{K/k}^{(1)}(G_m)$ of K/k whose Galois closures L/k are dihedral extensions.

Academic Significance and Societal Importance of the Research Achievements

K/kのハッセノルム原理は数論でよく知られた問題だが,[K:k]が6以下の場合や素数の場合など特別な場合しか知られていなかった.特に[K:k]=8,12の場合はほとんど知られていなかった.本研究では主にYu. A. Drakokhrust, V. P. Platonovの結果に従って計算機も用いてdegree 15まで網羅的に決定した.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (9 results)

All 2024 2023 2022 2021 Other

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results) Presentation (2 results) Remarks (2 results)

  • [Journal Article] Rationality problem for norm one tori for dihedral extensions2024

    • Author(s)
      Hoshi Akinari、Yamasaki Aiichi
    • Journal Title

      Journal of Algebra

      Volume: 640 Pages: 368-384

    • DOI

      10.1016/j.jalgebra.2023.10.034

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Norm one tori and Hasse norm principle, II: Degree 12 case2023

    • Author(s)
      A. Hoshi, K. Kanai, A.Yamasaki
    • Journal Title

      Journal of Number Theory

      Volume: 244 Pages: 84-110

    • DOI

      10.1016/j.jnt.2022.09.006

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multiplicative Invariant Fields of Dimension ≦ 6.2023

    • Author(s)
      A.Hoshi, M.Kang, A.Yamasaki
    • Journal Title

      Memoirs of the American Mathematical Society

      Volume: 283 Issue: 1403 Pages: 1-137

    • DOI

      10.1090/memo/1403

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Norm one tori and Hasse norm principle2022

    • Author(s)
      A. Hoshi, K. Kanai, A.Yamasaki
    • Journal Title

      Mathematics of Computation

      Volume: 91 Issue: 337 Pages: 2431-2458

    • DOI

      10.1090/mcom/3735

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rationality problem for norm one tori2021

    • Author(s)
      Akinari Hoshi, Aiichi Yamasaki
    • Journal Title

      Israel Journal of Mathematics

      Volume: 241 Issue: 2 Pages: 849-867

    • DOI

      10.1007/s11856-021-2117-1

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Birational classification for algebraic tori (II)2024

    • Author(s)
      星明考 山崎愛一
    • Organizer
      日本数学会年会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Norm one tori and Hasse norm principle2021

    • Author(s)
      山崎愛一
    • Organizer
      代数的整数論とその周辺2021
    • Related Report
      2021 Research-status Report
  • [Remarks] Aiichi Yamasaki’s Homepage / algorithm

    • URL

      https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/

    • Related Report
      2023 Annual Research Report
  • [Remarks] Algorithm (Aiichi Yamasaki's Homepage)

    • URL

      https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/

    • Related Report
      2022 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi