• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New development of theory of integral closure and its applications to local rings

Research Project

Project/Area Number 20K03535
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOkayama University

Principal Investigator

Hayasaka Futoshi  岡山大学, 環境生命自然科学学域, 教授 (20409460)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords整閉イデアル / 2次元正則局所環 / 整閉加群 / 直既約加群 / 行列式イデアル / 整閉包 / 加群 / 直既約 / イデアル冪 / 素因子 / 正則局所環 / 局所環 / ブックスバウム・リム重複度
Outline of Research at the Start

局所環の整閉イデアルの振る舞いは、環の特異性を計る尺度となる。Zariskiが創始したこの視点の研究は、これまで多くの研究者によって精密な理論が展開されてきた。近年、これを高階数化する研究が新展開され、局所環の構造が、その上の整閉加群の振る舞いにまで反映すると考えられている。本研究は、局所環上の整閉加群の理論を独自展開し、整閉包の理論を発展させることで、局所環の構造論への応用を目指すものである。

Outline of Final Research Achievements

We studied the existence of indecomposable integrally closed modules over two-dimensional regular local rings and the associated determinantal ideals. We obtained a method for constructing indecomposable integrally closed modules associated with integrally closed monomial ideals, and gave a large class of indecomposable integrally closed modules of arbitrary rank. Furthermore, we obtained a characterization of integrally closed ideals which arise as the determinantal ideals of indecomposable integrally closed modules of rank 2 and 3.

Academic Significance and Societal Importance of the Research Achievements

古典的な整閉イデアルの理論を高階数化した2次元正則局所環上の整閉加群の理論では、直既約整閉加群がどれくらい存在するか?という問いが理論の非自明性を示す上で重要である。得られた成果は、直既約整閉加群とそれに付随する行列式イデアルが予想より大量かつ多様に存在することを示すもので、理論の非自明性を強化するばかりでなく、整閉加群の分類可能性を示唆するものである。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (14 results)

All 2024 2023 2022 2021 2020

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results) Presentation (10 results) (of which Invited: 2 results)

  • [Journal Article] Indecomposable integrally closed modules of rank 3 over two-dimensional regular local rings2024

    • Author(s)
      Hayasaka Futoshi、Kodiyalam Vijay
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 228 Issue: 6 Pages: 107612-107612

    • DOI

      10.1016/j.jpaa.2024.107612

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] NOTE ON INDECOMPOSABLE INTEGRALLY CLOSED MODULES OF RANK 2 OVER TWO-DIMENSIONAL REGULAR LOCAL RINGS2023

    • Author(s)
      Hayasaka Futoshi、Kodiyalam Vijay
    • Journal Title

      Journal of Commutative Algebra

      Volume: 15 Issue: 4 Pages: 513-518

    • DOI

      10.1216/jca.2023.15.513

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Indecomposable integrally closed modules of arbitrary rank over a two-dimensional regular local ring2022

    • Author(s)
      Hayasaka Futoshi
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 226 Issue: 8 Pages: 107026-107026

    • DOI

      10.1016/j.jpaa.2022.107026

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Constructing indecomposable integrally closed modules over a two-dimensional regular local ring2020

    • Author(s)
      Hayasaka Futoshi
    • Journal Title

      Journal of Algebra

      Volume: 556 Pages: 879-907

    • DOI

      10.1016/j.jalgebra.2020.03.029

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] On a question of Ratliff on the associated primes of powers of an ideal2024

    • Author(s)
      早坂太
    • Organizer
      OCAMI可換環論・不変式論セミナーIII
    • Related Report
      2023 Annual Research Report
  • [Presentation] 2次元正則局所環上の整閉加群の分類に向けて2024

    • Author(s)
      早坂太
    • Organizer
      第2回札幌可換環論セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] 直既約整閉加群に付随する行列式イデアルについて2023

    • Author(s)
      早坂太
    • Organizer
      岡山可換代数表現セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] An example to a question of Ratliff on asymptotic prime divisors2023

    • Author(s)
      早坂太・今村青斗
    • Organizer
      第44回可換環論シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Ideals of idecomposable integrally closed modules over two-dimensional regular local rings2023

    • Author(s)
      Futoshi Hayasaka
    • Organizer
      The 11th Japan-Vietnam Joint seminar on Commutative Algebra
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 2次元正則局所環上の階数2の直既約整閉加群2022

    • Author(s)
      早坂太
    • Organizer
      第33回可換環論セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] 2次元正則局所環上の直既約整閉加群について2022

    • Author(s)
      早坂太
    • Organizer
      特異点セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] On ideals of indecomposable integrally closed modules over two-dimensional regular local rings2022

    • Author(s)
      早坂太
    • Organizer
      第43回可換環論シンポジウム
    • Related Report
      2022 Research-status Report
  • [Presentation] A note on the Buchsbaum-Rim multiplicity of modules over a two-dimensional regular local ring2021

    • Author(s)
      早坂太
    • Organizer
      第42回可換環論シンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] 単項式イデアルに付随する高階数直既約整閉加群2020

    • Author(s)
      早坂太
    • Organizer
      可換環論オンラインワークショップ
    • Related Report
      2020 Research-status Report
    • Invited

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi