• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of the class group in the class field theory for curves over local fields

Research Project

Project/Area Number 20K03536
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyushu Institute of Technology

Principal Investigator

Hiranouchi Toshiro  九州工業大学, 大学院工学研究院, 准教授 (30532551)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords類体論 / 楕円曲線 / イデアル類群 / 岩澤理論 / 類群 / 代数的K群
Outline of Research at the Start

代数体のイデアル類群の研究は代数的整数論の中でもとりわけ重要でこれまで多くの研究がなされてきた。整数論の問題への応用という観点からも重要であるが、いまではこの群そのものを調べること自体に関心が持たれている。こうした理論の類似として局所体上の曲線に対する類体論におけるイデアル類群の類似物である「類群」の研究を同様に行うことが本研究の目的である。

Outline of Final Research Achievements

The purpose of this study was to explicitly compute the finite part of the "class group" which is a finitely generated abelian group (analogous to the classical ideal class group) in the context of the class field theory of curves over p-adc fields. In this study, by studying the structure of the Milnor type K-group, the so-called "Somekawa K-group," associated with Abelian varieties with good redcution and the multiplicative groups, we were able to provide the Abelian group structure of the "class group" associated with a curve and the upper and lower bounds of the order of the group.

Academic Significance and Societal Importance of the Research Achievements

今回の研究対象であるp進体上の曲線の類体論は、もともと高次元の多様体に対する類体論(いわゆる高次元類体論)を証明する過程で生まれた理論である。これまではどちらかと言えばその理論的側面の研究に主眼が置かれていたように思われる。しかし、今回の研究で具体的な曲線に対してより具体的に計算を行うことができた。その結果、古典的な類体論と同じように岩澤理論のような他の分野への応用・発展にも貢献するものと考えられる。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (10 results)

All 2023 2022 2021

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Open Access: 2 results,  Peer Reviewed: 3 results) Presentation (4 results)

  • [Journal Article] Bounds for the K-Groups Associated to Abelian Varieties Over a p-adic Field2023

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Bulletin of the Kyushu Institute of Technology. Pure and applied mathematics

      Volume: 70 Issue: 70 Pages: 25-32

    • DOI

      10.18997/00009111

    • URL

      https://kyutech.repo.nii.ac.jp/records/7908

    • Year and Date
      2023-03-31
    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Asymptotic behavior of class groups and cyclotomic Iwasawa theory of elliptic curves2023

    • Author(s)
      Toshiro Hiranouchi and Tatsuya Ohshita
    • Journal Title

      J. Theor. Nombres Bordeaux(受理決定)

      Volume: 未定

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Galois Symbol Map for A Tate Curve2022

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Bull. Kyushu Inst. Technol. Pure Appl. Math.

      Volume: 69

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] Divisibility results for zero-cycles2021

    • Author(s)
      Evangelia Gazaki, Toshiro Hiranouchi
    • Journal Title

      Eur. J. Math.

      Volume: 7 Issue: 4 Pages: 1458-1501

    • DOI

      10.1007/s40879-021-00471-y

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Galois symbol maps for abelian varieties over a $p$-adic field2021

    • Author(s)
      Hiranouchi Toshiro
    • Journal Title

      Acta Arithmetica

      Volume: 197 Issue: 2 Pages: 137-157

    • DOI

      10.4064/aa191129-11-4

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Albanese kernel of the product of curves over a p-adic field2021

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Bull. Kyushu Inst. Technol. Pure Appl. Math.

      Volume: 68 Pages: 1-7

    • NAID

      120007002714

    • Related Report
      2020 Research-status Report
  • [Presentation] Asymptotic behavior of class groups and cyclotomic Iwasawa theory of elliptic curves2022

    • Author(s)
      平之内俊郎
    • Organizer
      日本数学会九州支部例会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Ramified part of the geometric fundamental groups for curves over a p-adic field2022

    • Author(s)
      平之内俊郎
    • Organizer
      日本数学会九州支部例会
    • Related Report
      2021 Research-status Report
  • [Presentation] Divisibility results for zero-cycles over a p-adic field2021

    • Author(s)
      Toshiro Hiranouchi
    • Organizer
      日本数学会九州支部例会
    • Related Report
      2020 Research-status Report
  • [Presentation] Divisibility results for zero-cycles over a p-adic field2021

    • Author(s)
      Toshiro Hiranouchi
    • Organizer
      九州代数的整数論集会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi