• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic study on automorphic forms of several variables

Research Project

Project/Area Number 20K03547
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionYamato University

Principal Investigator

Nagaoka Shoyu  大和大学, 理工学部, 教授 (20164402)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsモジュラー形式 / テータ級数 / アイゼンシュタイン級数 / 整数論
Outline of Research at the Start

前期の研究で進展した、多変数モジュラー形式に作用する「テータ作用素のmod p核」の理論を進めていく。具体的に述べれば、前期の研究で発見された事実である、Igusaの重さ35のカスプ形式と呼ばれる2次のジーゲルモジュラー形式がテータ作用素を施すと、フーリエ係数がすべて、素数23で割り切れるという現象について、なぜこのような現象が起きるか、すなわち、モジュラー形式のもつ「重さ35」とフーリエ係数の「合同に現れる素数23」の間にどのような関係があるかを明らかにしていく。標数pの多変数モジュラー形式のもつ性質を明らかにしていく。

Outline of Final Research Achievements

The aim of the study concerned is to elucidate the number-theoretic properties of modular forms of several variables. In particular, the study focuses on the Fourier coefficients of modular forms of several variables and investigates the integer-theoretic properties they possess. The goal of this phase of the research was to focus on the p-adic properties of modular forms. We were able to give a final proof of the phenomenon of the coincidence of p-adic Eisenstein series and theta series, which was set as the main goal of the research project. This was summarized in the paper On p-adic Siegel Eisenstein series.

Academic Significance and Societal Importance of the Research Achievements

モジュラー形式の理論は、フェルマーの最終定理の証明にも使われたように整数論の様々な分野に応用される。最近では、この理論に深い関係がある楕円曲線の理論が「暗号理論」にも応用されている。楕円曲線は一変数モジュラー形式(楕円モジュラー形式)と関連があるが、当該研究は、このモジュラー形式の概念をおもに「多変数化」したジーゲル モジュラー形式の場合に、そのフーリエ係数が持つ整数論的性質、具体的には、素数$p$にかんする「mod p理論」や「p進理論」を探求した。多変数の場合の他分野への応用は、これからの課題であるが、我々が見出した様々な興味深い(整数論的)現象は、これから応用が期待される。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (7 results)

All 2023 2022 2021

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] Congruence relations satisfied by quaternionic modular forms2023

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      The Ramanujan Journal

      Volume: - Issue: 3 Pages: 799-811

    • DOI

      10.1007/s11139-023-00709-1

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Residue of some Eisenstein series2023

    • Author(s)
      Shoyu nagaoka
    • Journal Title

      Indian Journal of Pure and Applied Mathematics

      Volume: - Issue: 4 Pages: 1180-1197

    • DOI

      10.1007/s13226-023-00419-w

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On p-divisibility of Fourier coefficients of Siegel modular forms2023

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      The Ramanujan Journaol

      Volume: - Issue: 4 Pages: 1107-1123

    • DOI

      10.1007/s11139-023-00743-z

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On p-adic Siegel Eisenstein series2023

    • Author(s)
      Hidenori Katsurada and Shoyu Nagaoka
    • Journal Title

      Journal of Number Theory

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Notes on the residue of Eisenstein series2022

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Journal of Yamato University (Faculty of Science and Engineering)

      Volume: 8 Pages: 1-6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Notes on theta series for Niemeier lattices II2021

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      The Ramanujan Journal

      Volume: 55 Issue: 1 Pages: 327-335

    • DOI

      10.1007/s11139-020-00304-8

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Niemeier格子のテータ級数について2023

    • Author(s)
      長岡昇勇
    • Organizer
      IMI同利用研究集会「離散構造における不変量」
    • Related Report
      2022 Annual Research Report
    • Invited

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi