• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of the moduli space of periodic minimal surfaces by means of geometric invariants

Research Project

Project/Area Number 20K03616
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionKansai University (2021-2023)
Saga University (2020)

Principal Investigator

Shoda Toshihiro  関西大学, システム理工学部, 教授 (10432957)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords三重周期的な極小曲面 / Morse指数 / 退化次数 / 符号数 / 安定性 / 三重周期極小曲面 / 分岐理論 / 周期的極小曲面 / モジュライ空間
Outline of Research at the Start

本研究期間では主に二つのプロジェクトを進める.
一つは3次元ユークリッド空間内の三重周期極小曲面でMorse指数が1となるもの全体の空間を解明することである.もう一つは4次元以上のユークリッド空間内の周期的極小曲面の幾何学的不変量の計算を行うことである.前者は界面活性剤の膜の変形すべてを幾何学的不変量によって記述するものであり,後者はそうした理論の数学的一般化に該当する.

Outline of Final Research Achievements

A triply periodic minimal surface is a mathematical model of surfactant, and our main theme in this period is to study the moduli space of triply periodic minimal surfaces by means of three kinds of geometric invariants, namely, the Morse index, the nullity, the signature.

We first focus on the genus three case, and computed the three quantities for the mPCLP/mDCLP family, which is a three parameter family and which have been studied in physics in 1990s. Next, we consider a boundary of the moduli space via the Bolza surface which is the genus two classical closed surface. We determined the three quantities around the boundary, and find a local structure of the boundary of the moduli space.

Academic Significance and Societal Importance of the Research Achievements

界面活性剤という実際に現実の世界に存在する膜が何故その形状をとるのかという疑問が常にある。先述の通り、三重周期的な極小曲面は界面活性剤の数学的モデルである。一方、微分幾何学においては自然現象はある特定の幾何学的不変量の値をとる場合に該当すると考えられている。このことから、幾何学的不変量を計算することによって三重周期的な極小曲面全体の集合の構造を解明することは、自然現象の原理を解明するという学術的および社会的な意義がある。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (12 results)

All 2023 2022 2021 2020 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (8 results) (of which Int'l Joint Research: 4 results,  Invited: 8 results) Remarks (2 results)

  • [Journal Article] The geometric invariants for mPCLP/mDCLP family2022

    • Author(s)
      Norio Ejiri and Toshihiro Shoda
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 51 Issue: 3

    • DOI

      10.14492/hokmj/2020-411

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] The Existence of rG Family and tG Family, and Their Geometric Invariants2020

    • Author(s)
      Ejiri Norio、Shoda Toshihiro
    • Journal Title

      Mathematics

      Volume: 8 Issue: 10 Pages: 1693-1693

    • DOI

      10.3390/math8101693

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 三種の不変量による周期的極小曲面のモジュライ空間の幾何構造について2023

    • Author(s)
      庄田敏宏
    • Organizer
      部分多様体幾何とリー群作用2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Geometric quantities of a triply periodic minimal surface of genus four2023

    • Author(s)
      庄田敏宏
    • Organizer
      7th International Colloquium on Differential Geometry, University of Patras (Greece)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 三重周期極小曲面におけるMorse指数と符号数の関係について2022

    • Author(s)
      庄田敏宏
    • Organizer
      RIMS共同研究(公開型)「部分多様体論と幾何解析の新展開」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] I-WP曲面のMorse指数について2022

    • Author(s)
      庄田敏宏
    • Organizer
      福岡大学微分幾何研究集会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] On the non-existence of new families of triply periodic minimal surfaces2022

    • Author(s)
      庄田敏宏
    • Organizer
      Workshop on Differential Geometry and Geometric Analysis
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Moduli theory of minimal surfaces in flat tori2022

    • Author(s)
      庄田敏宏
    • Organizer
      RIMS Research Project 2020, RIMS Review Seminar「Symmetry and Stability in Differential Geometry of Surfaces」
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Transversal properties for period maps on Moduli space of triply periodic minimal surfaces2021

    • Author(s)
      庄田敏宏
    • Organizer
      The 3rd Japan-Taiwan Joint Conference on Differential Geometry
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 閉曲面上におけるLaplacianの最小正固有値に関する等周問題について2021

    • Author(s)
      庄田敏宏
    • Organizer
      広島幾何学研究集会 2021
    • Related Report
      2021 Research-status Report
    • Invited
  • [Remarks] 庄田敏宏ホームページ「業績リスト」

    • URL

      https://www2.itc.kansai-u.ac.jp/~tshoda/

    • Related Report
      2023 Annual Research Report
  • [Remarks] 業績リスト

    • URL

      https://www2.itc.kansai-u.ac.jp/~tshoda/

    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi