• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The study of the hittig time and the Wiener sausage for diffusion process

Research Project

Project/Area Number 20K03634
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Hamana Yuji  筑波大学, 数理物質系, 教授 (00243923)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
KeywordsWiener sausage / Bessel 過程 / Ornstein-Uhlenbeck 過程 / 到達時刻 / square-root boundary / Brown 運動 / Wienee sausage / Laplace 変換 / Square-root boundary / Gegenbauer 多項式 / エントロピー関数 / 大偏差原理 / ピン留め Brown 運動
Outline of Research at the Start

Poisson ポテンシャルをもつランダム Schrodinger 作用素の状態密度関数の Lifshitz tail の研究においては,Wiener sausage の体積の指数関数的な挙動が重要な役割を果たすことが指摘され,大偏差原理という理論がつくられました.
Wiener sausage の体積の大偏差原理については大部分が解決されている一方で,エントロピー関数がどのように与えられるかわかっていません.本研究では,エントロピー関数を決定する試みを行います.また,Ornstein-Uhlenbeck 過程に関する Wiener sausage についても研究を行います.

Outline of Final Research Achievements

We determined the distribution function of the first hitting time of Bessel porcess to the square-root boundary and deduced its explicit form by using results on the first hitting time of the radial Ornstein-Uhlenbeck process with suitable parameters.
In addition, we gave the joint density function of the first hitting time and site of Brownian motion with and without a drift.
On the other hand, we gave the third term of the distribution function of the first hitting time of Bessel process and show that its behavior is different according the order of the Besel process. Moreover we had the asymptotic behavior of the expectation of the hitting time of hyperbolic Bessel process.

Academic Significance and Societal Importance of the Research Achievements

Ornstein-Uhlenbeck 過程に対する Wiener sausage の体積の期待値は,球の内部の温度が1で外部の温度が0という初期状態で,球の内部の温度を1に保ったままのとき,中心から離れるにしたがって熱が伝わりにくい状況下での球から流出した熱の総量を表す.この期待値の研究のためには,Brown 運動の球面への到達時刻と適当な関数のその時刻までの確率積分の同時分布を調べることが重要であり,本研究は,その前段階として被積分関数が定数の場合についての結果を得ることができた.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (11 results)

All 2024 2023 2022 2021

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (7 results)

  • [Journal Article] Brownian hitting to spheres2024

    • Author(s)
      Yuji Hamana, Hiroyuki Matsumoto
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Hitting times of hyperbolic Bessel processes2024

    • Author(s)
      Yuji Hamana, Lujia Zhang
    • Journal Title

      Colloquium Mathematicum

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Square-root boundaries for Bessel processes and the hitting times of radial Ornstein-Uhlenbeck processes2023

    • Author(s)
      Hamana Yuji
    • Journal Title

      Opuscula Mathematica

      Volume: 43 Issue: 2 Pages: 145-172

    • DOI

      10.7494/opmath.2023.43.2.145

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Asymptotic expansions for the first hitting times of Bessel processes2021

    • Author(s)
      Yuji Hamana, Ryo Kaikura, Kosuke Shinozaki
    • Journal Title

      Opuscula Mathematica

      Volume: 41 Pages: 509-537

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Ornstein-Uhlenbeck 過程の到達時刻と到達位置について2024

    • Author(s)
      濱名裕治
    • Organizer
      慶應確率論ワークショップ
    • Related Report
      2023 Annual Research Report
  • [Presentation] Ornstein-Uhlenbeck 過程の到達時刻と到達位置について2024

    • Author(s)
      濱名裕治
    • Organizer
      新潟確率論ワークショップ
    • Related Report
      2023 Annual Research Report
  • [Presentation] ブラウン運動の到達時刻と到達位置の末尾確率の漸近展開について2024

    • Author(s)
      濱名裕治
    • Organizer
      日本数学会年会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 双曲ベッセル過程の到達時刻について2023

    • Author(s)
      濱名裕治
    • Organizer
      研究集会「マルコフ過程と関数論」
    • Related Report
      2023 Annual Research Report
  • [Presentation] 双曲ベッセル過程の到達時刻について2023

    • Author(s)
      濱名裕治
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Square-root boundaries for Bessel processes2022

    • Author(s)
      濱名 裕治
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] Square-root boundaries for Bessel processes2022

    • Author(s)
      濱名 裕治
    • Organizer
      マルコフ過程とその周辺
    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi