• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Higher-order asymptotic analysis of nonconformal iterative function systems with infinite graphs by asymptotic theory construction of transfer operators

Research Project

Project/Area Number 20K03636
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionWakayama Medical University

Principal Investigator

Tanaka Haruyoshi  和歌山県立医科大学, 医学部, 講師 (60648567)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords転送作用素 / 漸近摂動 / 反復関数系 / 漸近分散 / 擬コンパクト / 漸近理論 / 非共形写像 / Hausdorff次元 / Gibbs測度 / 無限グラフ / 準安定系
Outline of Research at the Start

非共形(non-conformal)な反復関数系の極限集合の次元はBowen型の等式から直接求めることができる場合が少なく,上からと下からの評価を別々に与えるケースが多い.本研究では,無限グラフを備えた非共形反復関数系の極限集合の次元の推定について,次元の高次漸近展開を与えることによって,より精密な評価をすることを目指す.併せて,力学的特性量(極限集合上のGibbs測度,測度論的エントロピーなど)の漸近挙動,及び,ホール(hole)をもつ摂動グラフ反復関数系の平衡測度の収束性を調べる研究も行う.力学的特性量を導出する際に用いる転送作用素の漸近理論を構築しこれらの問題に適用する.

Outline of Final Research Achievements

If a transfer operator is asymptotically perturbed, then we give the asymptotic expansions of the eigenvalues, of the corresponding eigenfunctions, and of the corresponding eigenvectors of the dual operator. In particular, by a method of recursively giving the coefficients of the asymptotic expansion, it possible to make the uniform spectral gap condition of the eigenvalues unnecessary or weak. As an application, we give a high-order asymptotic expansion for the Hausdorff dimension of the limit set of non-conformal iterated function systems with an infinite directed graph. As another application, we obtained some splitting phenomena of Gibbs measures for open-type perturbed Markov systems with countable states.

Academic Significance and Societal Importance of the Research Achievements

関数を漸近展開することにより,近似値を得ることができるという考え方は,線形作用素の固有値および固有ベクトルにも適用することができる.また,漸近展開を行うためだけであれば,可微分性の条件を緩めることもできる.本研究では,これらを転送作用素の中で定式化し,反復関数系から生成される極限集合のHausdorff次元の近似値を求めることで,その有用性を実証した.今後はランダム化や非自励系版などにも適用し,漸近理論の可能性をさらに広げていくことが期待される.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (14 results)

All 2023 2022 2021 2020 Other

All Journal Article (4 results) (of which Peer Reviewed: 1 results,  Open Access: 3 results) Presentation (9 results) Remarks (1 results)

  • [Journal Article] Asymptotic solution of Bowen equation for perturbed potentials on shift spaces with countable states2023

    • Author(s)
      Haruyoshi Tanaka
    • Journal Title

      Journal of Fractal Geometry, to appear

      Volume: - Issue: 1 Pages: 151-168

    • DOI

      10.4171/jfg/135

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On dimension estimates in nonconformal graph iterated function systems via asymptotic perturbation2023

    • Author(s)
      田中晴喜
    • Journal Title

      日本数学会 2022年日本数学会年会,統計数学分科会講演アブストラクト

      Volume: - Pages: 43-44

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Asymptotic behaviours of pressure functionals and statistical representations of the coefficients2022

    • Author(s)
      Haruyoshi Tanaka
    • Journal Title

      RIMS Kokyuroku "Integrated Research on Random Dynamical Systems and Multi-Valued Dynamical Systems"

      Volume: 2217 Pages: 51-61

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Asymptotic solution of Bowen equation for perturbed potentials defined on shift spaces2021

    • Author(s)
      Haruyoshi Tanaka
    • Journal Title

      RIMS Kokyuroku

      Volume: 2176 Pages: 28-36

    • NAID

      120007141902

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Presentation] グラフ構造をもつ反復関数系の漸近摂動とその応用2023

    • Author(s)
      田中晴喜
    • Organizer
      広島確率論・力学系セミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] On dimension estimates in nonconformal graph iterated function systems via asymptotic perturbation2023

    • Author(s)
      田中晴喜
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Asymptotic behaviors of thermodynamic quantities in perturbed graph directed Markov systems2022

    • Author(s)
      田中晴喜
    • Organizer
      RIMS共同研究集会「ランダム力学系・非自励力学系研究の展望:理論と応用」
    • Related Report
      2022 Annual Research Report
  • [Presentation] Quasi-compactness of transfer operators for topological Markov shifts with holes and some applications2022

    • Author(s)
      田中晴喜
    • Organizer
      RIMS共同研究(グループ型A)「エルゴード理論の最近の進展」
    • Related Report
      2022 Annual Research Report
  • [Presentation] Quasi-compactness of transfer operators for topological Markov shifts with holes and some applications2022

    • Author(s)
      田中晴喜
    • Organizer
      「2022 年度エルゴード理論研究集会」
    • Related Report
      2022 Annual Research Report
  • [Presentation] On dimension estimates in nonconformal graph iterated function systems via asymptotic perturbation2022

    • Author(s)
      田中晴喜
    • Organizer
      「2022 年度冬の力学系研究集会」
    • Related Report
      2022 Annual Research Report
  • [Presentation] Asymptotic behaviours of pressure functionals and statistical representations of the coefficients2021

    • Author(s)
      田中晴喜
    • Organizer
      数理解析研究所共同研究(公開型)オンライン研究集会「ランダム力学系および多価写像力学系理論の総合的研究」
    • Related Report
      2021 Research-status Report
  • [Presentation] An asymptotic analysis in thermodynamic formalism for countable Markov shifts2021

    • Author(s)
      田中晴喜
    • Organizer
      2020年度冬の力学系研究集会
    • Related Report
      2020 Research-status Report
  • [Presentation] 可算マルコフシフトに対する熱力学形式における漸近解析2020

    • Author(s)
      田中晴喜
    • Organizer
      広島確率論・力学系セミナー
    • Related Report
      2020 Research-status Report
  • [Remarks] Haruyoshi Tanaka's Home Page

    • URL

      http://www.wakayama-med.ac.jp/med/lasstatist/index.html

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi