• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical analysis on the linear response for solutions of mean field equations

Research Project

Project/Area Number 20K03675
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKanazawa University

Principal Investigator

OHTSUKA Hiroshi  金沢大学, 数物科学系, 教授 (20342470)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords線形応答 / 点渦系 / 平均場 / 非線形楕円型方程式
Outline of Research at the Start

多数の粒子がなす系の変化を考察する場合、粒子が連続的に分布すると仮定して、粒子の分布関数の変化を考察することが多い。本課題は、そのような考察が本当に可能かどうかを研究する。整数と実数の差のように、離散的な存在と連続的な存在には差があると感じられる。大気や水に現れる渦の集まり(点渦系)を例に、このような離散と連続の差を考察する。特に、離散的な系(粒子系)と連続的な系(平均場)の双方に力を加えて生じるそれぞれの変化(線形応答)を観察することで、違いの有無を見出すことを試みる。

Outline of Final Research Achievements

The perturbation problem and linearization problem related to the semilinear elliptic partial differential equation describing the equilibrium state of many particle systems, known as the mean-field equation, were analyzed from the perspective of the particle system. The obtained results concern the asymptotic behavior of the eigenvalues of the linearized operator for the simplified mean-field equation, known as the Gel'fand problem, with a variable-coefficient. More specifically, when the solution of the variable-coefficient Gel'fand problem is sufficiently close to an n-point blow-up, the first to n-th eigenvalues of the linearized operator are controlled by the eigenvalues of an n×n matrix determined by the Hamiltonian characterizing the blow-up. I think this result proves the universality of the previously known results for the unperturbed Gel'fand problem.”

Academic Significance and Societal Importance of the Research Achievements

平均場とは、離散的な存在である粒子系において、粒子数を無限大にした極限に現れる粒子数の連続的な分布関数のことである。本研究は、平均場に対し、粒子系に遡って摂動を加え線形応答(摂動に関する微分)を調べ、それを用いて平均場の線形応答を解析することを目的としていた。このような研究はあまり類を見ないが、無限の自由度をもつ場を扱う偏微分方程式を、より精度よく有限自由度系で近似する手法を研究するものであり、研究が進むことで、物理学や工学などの実用上の応用が拡がることが期待できると考えている。得られたことは、極限操作を保証するのに必要な情報の一部に留まっているが、着実に成果を上げられたと考えている。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (13 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (3 results) Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results) Remarks (2 results)

  • [Int'l Joint Research] Eindhoven University of Technology(オランダ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Eindhoven University of Technology(オランダ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Eindhoven University of Technology(オランダ)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Refinement of asymptotic behavior of the eigenvalues for the linearized Liouville-Gel’fand problem2024

    • Author(s)
      Ohtsuka Hiroshi, Sato Tomohiko
    • Journal Title

      Nonlinear Analysis

      Volume: 240 Pages: 113464-113464

    • DOI

      10.1016/j.na.2023.113464

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Presentation] Refinement of asymptotic behavior of the eigenvalues for the linearized Liouville-Gel’fand problem2024

    • Author(s)
      大塚浩史
    • Organizer
      第15 回名古屋微分方程式研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Mean field theory of vortices, revisited2023

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      Functional Inequalities and Asymptotic Analysis of Nonlinear Elliptic Equations
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On a microscopic view of the stationary states of the elliptic-parabolic chemotaxis model2022

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      First Franco-Japanese Workshop on Chemotaxis Models -- Macroscopic and Microscopic Viewpoints --
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hydrodynamic boundary value problems of mean field equations2022

    • Author(s)
      大塚浩史
    • Organizer
      RIMS共同研究(公開型)「偏微分方程式の幾何的様相」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] On the linear response of equilibrium vortices2022

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      CASA Colloquim, Eindhoven University of Technology
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 平衡点渦系の数学理論:平均場と線形応答2021

    • Author(s)
      大塚浩史
    • Organizer
      東北大学数学教室談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On the linear response of equilibrium vortices2021

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      TU/e - KU Math Symposia
    • Related Report
      2021 Research-status Report
    • Invited
  • [Remarks] OHTSUKA, Hiroshi

    • URL

      https://ridb.kanazawa-u.ac.jp/public/detail_en.php?id=4197&page=2&org2_cd=340200

    • Related Report
      2020 Research-status Report
  • [Remarks] 大塚浩史のホームページ

    • URL

      http://www.bea.hi-ho.ne.jp/pickles/mp/

    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi