On the analysis of critical type equation involving a noncompact structure from the profile-decomposition point of view
Project/Area Number |
20K03681
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 非線型解析 / 無限次元力学系 / 非コンパクト軌道 / プロファイル分解 / 時間大域的漸近挙動 / 非コンパクト性 / 半線型放物型方程式 / 抽象力学系 / 臨界放物型方程式 / ソボレフ臨界指数 / 時間大域的有界性 |
Outline of Research at the Start |
解挙動が非コンパクト性を内包する臨界型偏微分方程式に対し, その臨界性を統御する関数不等式の実解析的構造 (プロファイル分解) に留意しつつ, 非コンパクトなエネルギー汎関数に対する勾配系と捉える立場から, 力学系・変分的手法, 爆発解析及び実関数論的手法を融合した枠組みを構築し, これまで自立した対象として扱われてこなかった非コンパクトな軌道を持つ解の挙動を解析する. また具体的な方程式の解析を受け, 「相対コンパクトな軌道」を対象とする従来の力学系理論を「有界だが相対コンパクトでない軌道」をも対象とするよう拡張し, 近平衡系において特異閾値解が顕現する秩序形成の数理を解明することを狙う.
|
Outline of Final Research Achievements |
Since various phenomena found in nature and society are nonlinear, their mathematical models are nonlinear partial differential equations, and mathematical power is indispensable for their analysis. Most of the existing studies directly extend dynamical systems theory to bounded solutions of ordinary differential equations, which are systems of finite degrees of freedom, by assuming relative compactness of solution trajectories, and do not provide the behavior of bounded solutions of infinite-dimensional partial differential equations. To improve this point, we incorporate the profile decomposition for bounded sequences in infinite dimensional spaces into the abstract dynamical systems theory and extend the conventional infinite dimensional dynamical systems theory. As an example, we treat the asymptotic behavior of time-global solutions of semilinear parabolic equations defined in a non-bounded domain and the associated critical-type functional inequalities.
|
Academic Significance and Societal Importance of the Research Achievements |
現代社会に生じる様々な現象はそのほとんどが非線型であるため、これらの予測には数学の力が欠かせない。応用的にはこれらの数理モデルの計算機シミュレーションが有効な方法の一つであるが、数値シミュレーションにより得られる結果は数値の集合体であり、適切な理論的枠組みから解釈しない限り「why」を理解することは難しい。さらに連続体の数理モデルは無限自由度を持つため、数理モデルの解析には「非線型性」と「無限次元性」を扱う適切な枠組みを考えることが重要である。本研究では、この枠組みとして、有限自由度系に対する力学系理論のプロファイル分解を用いた無限次元バージョンの開発、及びその周辺の数理的課題を扱った。
|
Report
(4 results)
Research Products
(11 results)