• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Stationary structure, self-similarity, and the behavior of solutions in nonlinear parabolic partial differential equations

Research Project

Project/Area Number 20K03685
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionHiroshima University

Principal Investigator

Naito Yuki  広島大学, 先進理工系科学研究科(理), 教授 (10231458)

Co-Investigator(Kenkyū-buntansha) 橋詰 雅斗  大阪大学, 大学院基礎工学研究科, 助教 (20836712)
Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords非線形解析 / 非線型楕円型偏微分方程式 / 特異解 / 優 Sobolev 臨界 / 走化性方程式系 / 自己相似解 / 楕円型偏微分方程式 / 漸近的性質 / 分岐問題 / 非線形熱方程式 / 特異定常解 / 有限時刻爆発 / 非線形偏微分方程式 / Sobolev 臨界
Outline of Research at the Start

非線形問題においては、方程式の解の値が有限時刻で無限大に発散したり、あるいは局所的に集中するなどの特異性の発現があげられる。そのような現象に対する考察では、スケール不変性などの方程式のもつ性質や、定常問題の解構造が重要な働きをする。
本研究では、非線形放物型方程式に対して、解の挙動と定常問題の解構造および自己相似性との関連性について考察を行う。とくに Sobolev 優臨界および Sobolev 臨界の場合において、特異定常解および自己相似解の構造を明らかにするとともに放物型方程式の解の振る舞いに及ぼす影響を考察する。

Outline of Final Research Achievements

We consider positive radial singuar solutions of semilinear elliptic equations with general supercitical growthes. We establish the existence and exact asymptotic expansions of the singular solutions as well as its uniqueness in the space of radial functions. We can apply these results to a wide class of nonlinearities in a unified way.
We study the simplest parabolic-elliptic model of chemotaxis in the spaces with higher diminsions. We show the optimal conditions on the initial data for the finite time blow-up and the global existence of solutions in terms of stationary solutons.

Academic Significance and Societal Importance of the Research Achievements

広いクラスの非線形楕円型偏微分方程式に対して、特異解の定性的性質を明らかにすることができた。
走化性方程式系において,空間10次元以上の場合は、Morrey 空間におけるノルム評価を用いた条件が最適であることを示すことができ,一方、空間3次元以上9次元以下では、既存の評価が最適ではなく改善の余地があることを示すことができた。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (24 results)

All 2023 2022 2021 2020

All Journal Article (9 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 9 results,  Open Access: 3 results) Presentation (14 results) (of which Int'l Joint Research: 5 results,  Invited: 9 results) Funded Workshop (1 results)

  • [Journal Article] Multiplicity of singular solutions to a class of semilinear elliptic equations2023

    • Author(s)
      Yuki Naito
    • Journal Title

      Memoirs on Differential Equations and Mathematical Physics

      Volume: 90 Pages: 97-110

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Effect of lower order perturbation on maximization problem associated with Trudinger-Moser inequality2023

    • Author(s)
      Hashizume Masato
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 30 Issue: 2 Pages: 1-26

    • DOI

      10.1007/s00030-022-00835-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic properties of critical points for subcritical Trudinger-Moser functional2023

    • Author(s)
      Hashizume Masato
    • Journal Title

      Advanced Nonlinear Studies

      Volume: 21 Issue: 05 Pages: 1-22

    • DOI

      10.1515/ans-2022-0042

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016920

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] W^{1,p} approximation of the Moser--Trudinger inequality2023

    • Author(s)
      Masato Hashizume and Norisuke Ioku
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 151 Issue: 10 Pages: 4279-4289

    • DOI

      10.1090/proc/16508

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Singular solutions for semilinear elliptic equations with general supercritical growth2022

    • Author(s)
      Miyamoto Yasuhito、Naito Yuki
    • Journal Title

      Annali di Matematica Pura ed Applicata (1923 -)

      Volume: 202 Issue: 1 Pages: 341-366

    • DOI

      10.1007/s10231-022-01244-4

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Blow-up criteria for the classical Keller-Segel model of chemotaxis in higher dimensions2021

    • Author(s)
      Naito Yuki
    • Journal Title

      Journal of Differential Equations

      Volume: 297 Pages: 144-174

    • DOI

      10.1016/j.jde.2021.06.024

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Fundamental properties and asymptotic shapes of the singular and classical radial solutions for supercritical semilinear elliptic equations2020

    • Author(s)
      Miyamoto Yasuhito、Naito Yuki
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 27 Issue: 6 Pages: 1-25

    • DOI

      10.1007/s00030-020-00658-4

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Maximization problem on Trudinger-Moser inequality involving Lebesgue norm2020

    • Author(s)
      Hashizume Masato
    • Journal Title

      Journal of Functional Analysis

      Volume: 2 Issue: 2 Pages: 108513-108513

    • DOI

      10.1016/j.jfa.2020.108513

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Properties of solutions to semilinear elliptic problem with Hardy potential2020

    • Author(s)
      Chern Jann-Long、Hashizume Masato、Hwang Gyeongha
    • Journal Title

      Journal of Differential Equations

      Volume: 2 Issue: 2 Pages: 1432-1464

    • DOI

      10.1016/j.jde.2020.01.009

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Singular solutions for semilinear elliptic equations with general supercritical growth,2023

    • Author(s)
      Yuki Naito
    • Organizer
      The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A bifurcation diagram of solutions to semilinear elliptic equations with general supercritical growth2023

    • Author(s)
      内藤雄基
    • Organizer
      第214回愛媛解析セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] A bifurcation diagram of solutions to semilinear elliptic equations with general supercritical growth2023

    • Author(s)
      Yuki Naito
    • Organizer
      2023 Korea-Japan Workshop on Nonlinear PDEs and Its Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A bifurcation diagram of solutions to semilinear elliptic equations with general supercritical growth2023

    • Author(s)
      Yuki Naito
    • Organizer
      RIMS 研究集会「常微分方程式の定性的理論の発展とその応用」
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Singular solutions for semilinear elliptic equations with general supercritical growth2023

    • Author(s)
      Yuki Naito
    • Organizer
      Colloquium in Department of Mathematics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Singular solutions for semilinear elliptic equations with general supercritical growth2023

    • Author(s)
      内藤雄基
    • Organizer
      第12回室蘭非線形解析研究会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Singular solutions for semilinear elliptic equations with general super critical growth2022

    • Author(s)
      宮本安人、内藤雄基
    • Organizer
      日本数学会2022 年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] 空間高次元における走化性方程式系の特異定常解について2022

    • Author(s)
      内藤雄基
    • Organizer
      第 2 回 香川における偏微分方程式研究会
    • Related Report
      2022 Research-status Report
  • [Presentation] Fundamental properties of the singular radial solutions for supercritical semilinear elliptic equations2021

    • Author(s)
      Yuki Naito
    • Organizer
      Differential Equations Day on Zoom
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Blow-up criteria for the parabolic-elliptic Keller-Segel system in higher dimensions2021

    • Author(s)
      内藤雄基
    • Organizer
      オンライン放物型偏微分方程式ワークショップ
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Blow-up criteria for the parabolic-elliptic Keller-Segel system in higher dimensions2021

    • Author(s)
      内藤雄基
    • Organizer
      日本数学会 函数方程式論分科会 一般講演
    • Related Report
      2021 Research-status Report
  • [Presentation] Singular solutions to semilinear elliptic equations with supercritical nonlinearity2021

    • Author(s)
      内藤雄基
    • Organizer
      香川における偏微分方程式研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Blow-up criteria for the classical Keller-Segel model of chemotaxis in higher dimensions2021

    • Author(s)
      内藤 雄基
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Existence and uniqueness of singular solutions for supercritical semilinear elliptic equations2021

    • Author(s)
      内藤雄基、宮本安人
    • Organizer
      日本数学会 函数方程式分科会一般講演
    • Related Report
      2020 Research-status Report
  • [Funded Workshop] 2024 Japan-Korea Workshop on Nonlinear PDEs and Its Applications2023

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi