• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Behavior Prediction of Traffic Participants based on Micro and Macro features for Urban Automated Driving

Research Project

Project/Area Number 20K04397
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 20020:Robotics and intelligent system-related
Research InstitutionKanazawa University

Principal Investigator

Yoneda Keisuke  金沢大学, 新学術創成研究機構, 准教授 (80643957)

Co-Investigator(Kenkyū-buntansha) 菅沼 直樹  金沢大学, 新学術創成研究機構, 教授 (50361978)
倉元 昭季  東京都立大学, システムデザイン研究科, 助教 (90826851)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords自動運転自動車 / 行動予測 / 移動ロボット / 深層学習 / 画像処理 / 画像認識 / 状態推定 / 周辺環境認識 / 自動運転 / コンピュータビジョン
Outline of Research at the Start

本研究は,一般交通参加者(自動車,二輪車,歩行者)と混在する自動運転において,調和の取れた運転行動を計画するために物体の数秒先の動きを高精度な予測手法の実現を目的とする.3年間の研究期間を予定しており,顕在的な物体の動き及び潜在的な動きの変化を考慮した予測技術を実現する.特に交差点走行に注目して,各物体間の相互作用をモデル化したミクロな行動予測と,深層学習を用いて環境周辺の動きの変化を俯瞰的に予測するマクロな行動予測技術を開発する.これらを横断的に統合することで,双方の特徴を考慮した物体予測モデルを構築して予測精度の改善を目指す.

Outline of Final Research Achievements

In the research on urban automated driving, surrounding object recognition utilizing onboard sensors’ information is one of the important technologies. Automated vehicles have to generate safe driving behaviors taking into account the movements and intentions of surrounding traffic participants such as vehicles, pedestrians, and cyclists. This research project investigates a behavior prediction method considering both apparent and latent behaviors of objects. We developed behavior prediction methods that can integrate multiple behavior models. In addition, different behavior prediction models are designed including a behavior model that predicts movements around the environment from a bird's-eye view, a behavior model that predicts the interaction between objects based on objects’ motion and a digital map, and a pedestrian posture estimation model based on camera images.

Academic Significance and Societal Importance of the Research Achievements

本研究では自動運転自動車が遭遇する交差点走行に注目し周辺との相互作用をモデル化したミクロな行動予測技術及び周辺の交通参加者の潜在的な動きを俯瞰的に予測するマクロな行動予測技術を開発し,これらを統合した予測精度改善の実現を目的と設定した.個別の物体を中心としたエージェントベースの行動予測及び俯瞰的な予測の双方の視点から横断的に統合し,物体の潜在的な動きの変化を考慮した滑らかな物体予測技術の実現を目指している.本研究の達成により,一般ドライバが感覚的に行う予測技術を自動運転の機能として実現することに貢献可能である.交差点走行の状況予測が強化され安全な走行環境の確保に期待したい.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (5 results)

All 2023 2022 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Monocular camera-based 3D human body pose estimation by Generative Adversarial Network considering joint range of motion represented by quaternion2023

    • Author(s)
      KURAMOTO Akisue、MIZUKOSHI Kosuke、NAKASHIMA Motomu
    • Journal Title

      Journal of Biomechanical Science and Engineering

      Volume: 18 Issue: 2 Pages: 22-00305-22-00305

    • DOI

      10.1299/jbse.22-00305

    • ISSN
      1880-9863
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] 自動運転のための交通参加者間の相互作用を考慮した行動予測2023

    • Author(s)
      前川 凌祐、菅沼 直樹、米陀 佳祐
    • Organizer
      2023年 電子情報通信学会 総合学会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 単眼カメラ画像上の2次元姿勢を用いた歩行者の進行方向推定2022

    • Author(s)
      倉元 昭季、米陀 佳祐、栁瀨 龍、菅沼 直樹
    • Organizer
      自動車技術会 2022年秋季大会学術講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Dynamic Occupancy Grid Map by Sensor Fusion of LiDAR, Radar and Digital Map Using Evidential Mapping for Automated Driving2021

    • Author(s)
      Keisuke YONEDA, Daisuke SARUYAMA, and Naoki SUGANUMA
    • Organizer
      the 4th International Symposium on Swarm Behavior and Bio-Inspired Robotics 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 単眼視画像から推定される人体姿勢を考慮した歩行者追跡システムの開発2021

    • Author(s)
      倉元昭季,米陀佳祐,菅沼直樹
    • Organizer
      電気学会 産業計測制御研究会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi