• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Toward New-Generation AI-Based CAD System: Development of Interpretable Deep Learning-Based CAD System for Breast Cancer Diagnosis Using Mammogram

Research Project

Project/Area Number 20K08012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionSendai National College of Technology

Principal Investigator

Zhang Xiaoyong  仙台高等専門学校, 総合工学科, 准教授 (90722752)

Co-Investigator(Kenkyū-buntansha) 費 仙鳳  東北文化学園大学, 工学部, 准教授 (20620470)
Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywordsマンモグラフィー / 計算機支援診断 / 深層学習 / 説明可能なAI / 乳がん / Mammograpy / Deep Learning / Explainable AI / Computer-Aided Diagnosis / Lesion Detection / Interpretablity / Breast Cancer / Computer-Aided Detection / Artificial Intellegence
Outline of Research at the Start

Deep learning (DL) has attracted extensive efforts for medical image analysis in recent years, such as breast cancer detection in mammogram.. However, since the DL worked in a “black box” fashion, its reliability became a vital problem for clinical application. For solve this problem, this research will focus on developing an interpretable DL-based computer-aided diagnosis system that can not only detect breast cancer in mammograms (making decision), but also produce a visual interpretation to provide understanding of the decision-making process (interpreting decision).

Outline of Final Research Achievements

The purpose of this study was to develop an explainable AI-based mammographic computer-aided diagnosis (CAD) system for breast cancer detection. We mainly focus on investigating the insight mechanism of AI models in reading a medical image and use it to help clinicians to understand the decision-making of AI models.
A digital mammogram dataset consisting of 30,000 cases with train labels were collected for training AI system. Several deep learning (DL)-based methods were developed for mammogram classification and mass detection in mammograms. Visualization techniques were utilized to generate visual explanations of diagnosis results. In addition, a domain shift issue related to train data was also investigated in this study.

Academic Significance and Societal Importance of the Research Achievements

本研究では、AIのブラックボックス性を解消するため、AI内部の可視化などの技術を用いて、説明可能なAI診断システムの開発を目的とする。説明可能なAI診断システムの開発は臨床面でも非常に重要な意義をもつ。本研究では、画像解剖学的知見に基づく解析により、診断根拠の解釈を可能とすることで、正確な診断だけでなく信頼性の高い医療AIシステムの実用が可能であることを実証した。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (23 results)

All 2024 2023 2022 2021 2020

All Journal Article (9 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 9 results,  Open Access: 6 results) Presentation (14 results) (of which Int'l Joint Research: 8 results)

  • [Journal Article] Inconsistency between Human Observation and Deep Learning Models: Assessing Validity of Postmortem Computed Tomography Diagnosis of Drowning2024

    • Author(s)
      Zeng Yuwen、Zhang Xiaoyong、Wang Jiaoyang、Usui Akihito、Ichiji Kei、Bukovsky Ivo、Chou Shuoyan、Funayama Masato、Homma Noriyasu
    • Journal Title

      Journal of Imaging Informatics in Medicine

      Volume: 2024 Issue: 3 Pages: 1-10

    • DOI

      10.1007/s10278-024-00974-6

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] How intra-source imbalanced datasets impact the performance of deep learning for COVID-19 diagnosis using chest X-ray images2023

    • Author(s)
      Zhang Zhang、Zhang Xiaoyong、Ichiji Kei、Bukovsk Ivo、Homma Noriyasu
    • Journal Title

      Scientific Reports

      Volume: 13 Issue: 1 Pages: 19049-19049

    • DOI

      10.1038/s41598-023-45368-w

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography2023

    • Author(s)
      Zeng Yuwen、Zhang Xiaoyong、Yoshizumi Issei、Zhang Zhang、Mizuno Taihei、Sakamoto Shota、Kawasumi Yusuke、Usui Akihito、Ichiji Kei、Bukovsky Ivo、Funayama Masato、Homma Noriyasu
    • Journal Title

      The Tohoku Journal of Experimental Medicine

      Volume: 260 Issue: 3 Pages: 253-261

    • DOI

      10.1620/tjem.2023.J041

    • ISSN
      0040-8727, 1349-3329
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Risk Analysis of Breast Cancer by Using Bilateral Mammographic Density Differences: A Case-Control Study2023

    • Author(s)
      Zhang Zhang、Zhang Xiaoyong、Chen Jiaqi、Takane Yumi、Yanagaki Satoru、Mori Naoko、Ichiji Kei、Kato Katsuaki、Yanagaki Mika、Ebata Akiko、Miyashita Minoru、Ishida Takanori、Homma Noriyasu
    • Journal Title

      The Tohoku Journal of Experimental Medicine

      Volume: 261 Issue: 2 Pages: 139-150

    • DOI

      10.1620/tjem.2023.J066

    • ISSN
      0040-8727, 1349-3329
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A 2.5D Deep Learning-Based Method for Drowning Diagnosis Using Post-Mortem Computed Tomography2023

    • Author(s)
      Zeng Yuwen、Zhang Xiaoyong、Kawasumi Yusuke、Usui Akihito、Ichiji Kei、Funayama Masato、Homma Noriyasu
    • Journal Title

      IEEE Journal of Biomedical and Health Informatics

      Volume: 27 Issue: 2 Pages: 1026-1035

    • DOI

      10.1109/jbhi.2022.3225416

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improved Tumor Image Estimation in X-Ray Fluoroscopic Images by Augmenting 4DCT Data for Radiotherapy2022

    • Author(s)
      Shinohara Takumi、Ichiji Kei、Wang Jiaoyang、Homma Noriyasu、Zhang Xiaoyong、Sugita Norihiro、Yoshizawa Makoto
    • Journal Title

      Journal of Advanced Computational Intelligence and Intelligent Informatics

      Volume: 26 Issue: 4 Pages: 471-482

    • DOI

      10.20965/jaciii.2022.p0471

    • ISSN
      1343-0130, 1883-8014
    • Year and Date
      2022-07-20
    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improved Tumor Image Estimation in X-ray Fluoroscopic Images by Augmenting 4DCT Data for Radiotherapy2021

    • Author(s)
      Takumi Shinohara, Kei, Ichiji, Xiaoyong Zhang, Norihiro Sugita, Noriyasu Homma,
    • Journal Title

      Journal of Advanced Computational Intelligence and Intelligent Informatics

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Hidden Markov Model-based Extraction of Target Objects in X-ray Image Sequence for Lung Radiation Therapy2020

    • Author(s)
      新藤 雅大, 市地 慶, 本間 経康, 張 曉勇, 奥田 隼梧, 杉田 典大, 八巻 俊輔, 髙井 良尋, 吉澤 誠
    • Journal Title

      IEEJ Transactions on Electronics, Information and Systems

      Volume: 140 Issue: 1 Pages: 49-60

    • DOI

      10.1541/ieejeiss.140.49

    • NAID

      130007779196

    • ISSN
      0385-4221, 1348-8155
    • Year and Date
      2020-01-01
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Adaptive Gaussian Mixture Model-Based Statistical Feature Extraction for Computer-Aided Diagnosis of Micro-Calcification Clusters in Mammograms2020

    • Author(s)
      Zhang Zhang、Zhang Xiaoyong、Ichiji Kei、Takane Yumi、Yanagaki Satoru、Kawasumi Yusuke、Ishibashi Tadashi、Homma Noriyasu
    • Journal Title

      SICE Journal of Control, Measurement, and System Integration

      Volume: 13 Issue: 4 Pages: 183-190

    • DOI

      10.9746/jcmsi.13.183

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] How Different Data Sources Impact Deep Learning Performance in COVID-19 Diagnosis using Chest X-ray Images2023

    • Author(s)
      Zhang Zhang, Xiaoyong Zhang, Kei Ichiji, Ivo Bukovsky, Shuoyan Chou, Noriyasu Homma
    • Organizer
      2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reliability investigation of deep learning when using imbalanced chest X-ray image sources for COVID-19 detection2023

    • Author(s)
      張彰,Xiaoyong Zhang, Noriyasu Homma
    • Organizer
      2023年度 電気関係学会東北支部連合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Integration of Classification and Segmentation for Computer-Aided Diagnosis System of Drowning2023

    • Author(s)
      Zeng Yuwen, Xiaoyong Zhang, Akihito Usui, Masato Funayama, Noriyasu Homma
    • Organizer
      2023年度 電気関係学会東北支部連合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 顕著性マップを用いた死後CTの溺死鑑別における深層学習モデルの性能向上の試み2023

    • Author(s)
      水野泰平,張曉勇,市地慶,張彰,杉田典大,本間経康
    • Organizer
      第31回インテリジェント・システム・シンポジウム(FAN2023)
    • Related Report
      2023 Annual Research Report
  • [Presentation] An Interpretable DL-Based Method for Diagnosis of H. Pylori Infection Using Gastric X-ray Images2021

    • Author(s)
      Reima Ishii, Xiaoyong Zhang, Noriyasu Homma
    • Organizer
      IEEE 3rd Global Conference on Life Sciences and Technologies
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep Learning-Based Interpretable Computer Aided Diagnosis of Drowning for Forensic Radiology2021

    • Author(s)
      Yuwen Zeng, Xiaoyong Zhang, et al.
    • Organizer
      60th Annual Conference of SICE
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep CNN-Based Computer-Aided Diagnosis for Drowning Detection using Post-mortem Lungs CT Images2021

    • Author(s)
      Amber H. Qureshi, Xiaoyong Zhang, et al.
    • Organizer
      2021 IEEE International Conference on Bioinformatics and Biomedicine
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 4次元CTデータの内挿・外挿によるX線透視像中の腫瘍像推定モデルの性能向上の試み2021

    • Author(s)
      篠原匠,市地慶, 本間経康, 張曉勇, 杉田典大, 吉澤誠
    • Organizer
      インテリジェント・システム・シンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] Deep neural network-based prediction of synthetic dual-energy X-ray fluoroscopic images: a feasibility study2020

    • Author(s)
      Jiaoyang Wang, Kei Ichiji1, Noriyasu Homma, Xiaoyong Zhang and Yoshihiro Takai
    • Organizer
      AAPM 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Deep Learning Aided Drowning Diagnosis for Forensic Investigations Using Post-Mortem Lung CT Images2020

    • Author(s)
      Homma, Noriyasu; Zhang, Xiaoyong; Qureshi, Amber Habib; Konno, Takuya; Kawasumi, Yusuke; Usui, Akihito; Funayama, Masato; Bukovsky, Ivo; Ichiji, Kei; Sugita, Norihiro; Yoshizawa, Makoto
    • Organizer
      42nd Engineering in Medicine and Biology Conference (EMBC 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Human ability enhancement for reading mammographic masses by a deep learning technique2020

    • Author(s)
      Homma, Noriyasu, Kyohei Noro, Xiaoyong Zhang, Yutaro Kon, Kei Ichiji, Ivo Bukovsky, Akiko Sato, and Naoko Mori
    • Organizer
      2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] An Interpretable DL-Based Method for Diagnosis of H. Pylori Infection Using Gastric X-ray Images2020

    • Author(s)
      Reima Ishii, Xiaoyong Zhang, Noriyasu Homma
    • Organizer
      2021 IEEE 3rd Global Conference on Life Sciences and Technologies
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Feature Fusionに基づく深層学習を用いた乳房X線画像上の小病変検出2020

    • Author(s)
      今佑太朗,張暁勇,本間経康,吉澤誠,
    • Organizer
      計測自動制御学会,東北支部第329回研究集会
    • Related Report
      2020 Research-status Report
  • [Presentation] 深層学習に基づく転移学習を用いた胃 X 線画像におけるピロリ感染の鑑別に関する研究2020

    • Author(s)
      石井玲真,張暁勇,本間経康,
    • Organizer
      計測自動制御学会,東北支部第330回研究集会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi