• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Radiomics analysis of breast images for precision medicine

Research Project

Project/Area Number 20K08131
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionShiga University

Principal Investigator

Muramatsu Chisako  滋賀大学, データサイエンス学系, 教授 (80509422)

Co-Investigator(Kenkyū-buntansha) 大岩 幹直  独立行政法人国立病院機構(名古屋医療センター臨床研究センター), その他部局等, 医長 (50649697)
川崎 朋範  埼玉医科大学, 医学部, 教授 (90456484)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywordsbreast cancer / precision medicine / radiomics / subtype classification / deep learning / ラジオミクス解析 / 深層学習 / 乳癌 / 画像診断 / サブタイプ分類 / グレード分類 / 乳腺腫瘤 / ディープラーニング
Outline of Research at the Start

乳癌は日本人女性の11人に1人が罹るがんと言われており,死亡率の低下には早期発見と適切な治療が最も重要である.本研究では,乳癌のマルチモダリティ画像診断が高い精度で効率よく行われ,治療方針の決定までスムーズに進められるように,医師の画像診断と病理診断を支援する人工知能システムの開発を目的とする.具体的には,病理診断等から得られたホルモン受容体,たんぱく質等の情報をもとにしたがんのサブタイプ分類やグレード,また治療成績等をマンモグラフィと乳腺超音波画像,MR画像のラジオミクス解析により予測する.病理画像の解析も行い,マンモグラフィ等における該当箇所と照らし合わせることにより,精度向上を目指す.

Outline of Final Research Achievements

The purpose of this study was to analyze breast cancer diagnostic images for classification of cancer subtypes and histological grades to assist radiologists in diagnosis and treatment planning and to contribute to precision medicine. For developing such systems, high quality database that includes multimodality images and the histologic information from multi-centers is required. In this study, we collected 600 of such cases. For classification of subtypes and histological grades, we compared single modality models and multimodality models and confirmed the higher classification accuracy with the multimodality models.

Academic Significance and Societal Importance of the Research Achievements

本研究では乳がんの診断の初期に用いられる画像によりがんのサブタイプの予測を行い,診断にかかる時間の短縮とよりスムーズな治療計画の決定により患者の経済的かつ心理的負担軽減を試みた.まだ予測精度は十分ではないが,本研究により診断画像によるサブタイプ分類の可能性が示唆された.本研究により,この分野の研究が更に進み,今後予測精度が向上すれば,乳がんの最適化医療への貢献が期待できる.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results) Book (1 results)

  • [Int'l Joint Research] Flinders University(オーストラリア)

    • Related Report
      2020 Research-status Report
  • [Journal Article] マンモグラフィと乳腺超音波画像を用いたサブタイプ分類2023

    • Author(s)
      村松千左子
    • Journal Title

      超音波TECHNO

      Volume: 35 Pages: 37-41

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Classification of intrinsic subtypes and histological grade for breast cancers by multimodality images2022

    • Author(s)
      Muramatsu C, Iwasaki T, Oiwa M, Kawasaki T, Fujita H
    • Journal Title

      Proceedings of SPIE

      Volume: 12286 Pages: 47-47

    • DOI

      10.1117/12.2625871

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Investigation on continual training of computer-aided diagnosis systems by semi-supervised learning2022

    • Author(s)
      Muramamatsu Chisako、Nishio Mizuho、Oiwa Mikinao、Yakami Masahiro、Kubo Takeshi、Fujita Hiroshi
    • Journal Title

      Proc. of IMIP 2022: 2022 4th International Conference on Intelligent Medicine and Image Processing

      Volume: - Pages: 58-62

    • DOI

      10.1145/3524086.3524095

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Intrinsic subtype classification of breast lesion on mammograms by contrastive learning2022

    • Author(s)
      Muramatsu C, Oiwa M, Kawasaki T, Fujita H
    • Journal Title

      Proc SPIE Medical Imaging

      Volume: 12033 Pages: 88-88

    • DOI

      10.1117/12.2613173

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Mammographic mass identification in dense breasts using multi-scale analysis of structured micro-patterns2020

    • Author(s)
      Sajeev S, Bajger M, Lee G, Muramatsu C, Fujita H
    • Journal Title

      Proceedings of SPIE Medical Imaging

      Volume: 11513 Pages: 72-72

    • DOI

      10.1117/12.2564272

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Classification of intrinsic subtypes and histological grade for breast cancers by multimodality images2022

    • Author(s)
      Muramatsu C, Oiwa M, Kawasaki T, Fujita H
    • Organizer
      International Workshop on Breast Imaging
    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] マンモグラフィと優先超音波画像を用いたサブタイプ分類2022

    • Author(s)
      村松千左子
    • Organizer
      日本超音波医学会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Intrinsic subtype classification of breast lesions on mammograms by contrastive learning2022

    • Author(s)
      Muramatsu C, Oiwa M, Kawasaki T, Fujita H
    • Organizer
      SPIE Medical Imaging
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Investigation on continual training of computer-aided diagnosis systems by semi-supervised learning2022

    • Author(s)
      Muramatsu C, Nishio M, Oiwa M, Yakami M, Kubo T, Fujita H
    • Organizer
      International Conference on Intelligent Medicine and Image Processing
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Book] 医療AIとディープラーニングシリーズ.超音波画像AI診断2021

    • Author(s)
      村松千左子,他(分担執筆)
    • Total Pages
      198
    • Publisher
      オーム社
    • ISBN
      9784274225765
    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi