• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Convolutional sparse representation of l1 norm error criterion and its development for distributed video coding and deep learning

Research Project

Project/Area Number 20K11878
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionKurume National College of Technology

Principal Investigator

Kuroki Yoshimitsu  久留米工業高等専門学校, 制御情報工学科, 教授 (60290847)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords畳み込み型スパース表現 / 分散圧縮符号化 / 深層学習 / 凸最適化
Outline of Research at the Start

畳み込み型ニューラルネットワークが実用化されつつあるが,学習に膨大なデータを必要とする.本研究では少数の学習データで畳み込みフィルタを導出可能な畳み込み型スパース表現に着目する.フィルタを求める際,雑音を含んだ画像が混入する可能性があるため,本研究では外れ値に対して頑健な畳み込みフィルタを設計する.得られたフィルタとその係数マップはパターン認識のみならず,分散圧縮符号化に適用する.フィルタは画像が平行移動しても同じであるため,外れ値だけでなく位置ずれに対しても頑健な手法であり,様々な応用が期待される.

Outline of Final Research Achievements

The recent advancements in AI were triggered by convolutional neural networks surpassing existing methods in the image classification contest. This study focuses on convolutional sparse representations, which approximate images using a sum of convolutional filters and their coefficients. Here, "sparse" means that the number of filter coefficients contain many zeros as possible. If the approximation accuracy is the same, a higher sparsity is considered to better representation of image features. In this study, we examined the application of distributed compression coding and convolutional neural networks and have achieved results superior to conventional methods.

Academic Significance and Societal Importance of the Research Achievements

本研究では畳み込みスパース表現のスパース性と近似精度の双方を向上させる方法として近似精度をL1ノルムと称する誤差ベクトルの絶対値和で評価する手法を提案した.また,計算負荷を低減し,大規模データで適用可能なコンセンサス方式を導出した.これらの成果は分散圧縮符号化および小規模な畳み込みニューラルネットワークにおける精度向上へとつながり,国際会議ICIIBMSにおけるStudent Best Paper Awardとして評価された.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (12 results)

All 2022 2021 2020 Other

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 7 results) Presentation (4 results) (of which Int'l Joint Research: 4 results) Remarks (1 results)

  • [Journal Article] Initial parameters of CNNs generated by Convolutional Sparse Representation with L1 error term2022

    • Author(s)
      Satoshi Yoda, Yuuto Tsukiashi, and Yoshimitsu Kuroki
    • Journal Title

      2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS)

      Pages: 380-381

    • DOI

      10.1109/iciibms55689.2022.9971702

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Image classification using convolutional sparce representation of l1 error term2021

    • Author(s)
      Yoshida Takahiro、Kobayashi Yusaku、Kuroki Yoshimitsu
    • Journal Title

      6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)

      Volume: 6 Pages: 248-249

    • DOI

      10.1109/iciibms52876.2021.9651628

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An image classification using convolutional sparse representation and cone-restricted subspace method2021

    • Author(s)
      Higuchi Yosuke、Hirakawa Tomoya、Kuroki Yoshimitsu
    • Journal Title

      6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)

      Volume: 6 Pages: 247-248

    • DOI

      10.1109/iciibms52876.2021.9651582

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convolutional Dictionary Learning with Huber Error and l<sub>1</sub> Regularization Terms2021

    • Author(s)
      Yoda Satoshi、Kawazoe Hironori、Kuroki Yoshimitsu
    • Journal Title

      2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)

      Volume: - Pages: 1-2

    • DOI

      10.1109/ispacs51563.2021.9651025

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Consensus Framework for Convolutional Dictionary Learning based on L1 Norm Error2021

    • Author(s)
      M. Takanashi and Y. Kuroki
    • Journal Title

      2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

      Volume: - Pages: 1400-1404

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Image classification with multi-scale convolutional sparse representation2020

    • Author(s)
      Kazuki Kitajima and Yoshimitsu Kuroki
    • Journal Title

      Proceedigns of 2020 IEEE 7th International Conference on Engineering Technologies and Applied Sciences (ICETAS)

      Volume: - Pages: 1-5

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Image Classification Using l1-fidelity Multi-layer Convolutional Sparse Representation2020

    • Author(s)
      Mizuki Takanashi and Yoshimitsu Kuroki
    • Journal Title

      Proceedigns of 2020 IEEE 7th International Conference on Engineering Technologies and Applied Sciences (ICETAS)

      Volume: - Pages: 1-5

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Distributed Compressed Video Sensing based on Convolutional Sparse Coding using a large number of keyframes2022

    • Author(s)
      Yosuke Higuchi and Yoshimitsu Kuroki
    • Organizer
      16h International collaboration Symposium on Information, Production and Systems (ISIPS 2021)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Distributed Compressed Video Sensing based on Convolutional Sparse Coding using Fourier Measurement Matrix and L1 Fidelity Term2022

    • Author(s)
      Takuro Eguchi, Hayata Morisaki, and Yoshimitsu Kuroki
    • Organizer
      16h International collaboration Symposium on Information, Production and Systems (ISIPS 2021)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] On Initial CNN parameters using convolutional sparse filters2021

    • Author(s)
      Satoshi Yoda, Akito Narahara, and Yoshimitsu Kuroki
    • Organizer
      15h International collaboration Symposium on Information, Production and Systems (ISIPS 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-layer Feature Extraction with Convolutional Dictionary Learning based on L1 Norm Error with Smoothed L0 Norm Regularization and Non-negative Coefficients2020

    • Author(s)
      Kaede KUmamoto and Yoshimitsu Kuroki
    • Organizer
      14h International collaboration Symposium on Information, Production and Systems (ISIPS 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Remarks] Research map 黒木祥光

    • URL

      https://researchmap.jp/read0047048

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi