Development of Discriminative Pattern Mining Techniques as a Foundation of Human-Centric Machine Learning
Project/Area Number |
20K11941
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61030:Intelligent informatics-related
|
Research Institution | Meijo University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 識別パターン発見 / 機械学習 / 説明可能AI / メモリ共有型並列 / 連関分類器 / 実行監視ツール / メモリ共有型並列計算 / 解釈・説明可能性 / 並列パターン発見 |
Outline of Research at the Start |
深層学習を含めた従来の機械学習手法では(i) 不透明性,(ii) 近似的な解,(iii) ハイパーパラメータのチューニングの必要性等,人間側が機械学習手法を確実・容易に理解・利用していく上で障害となる問題点を含んでおり,これらの問題点を解消・軽減する人間本位の機械学習の実現が望まれる.本研究では,このような人間本位の機械学習の基盤技術として,識別パターン発見技術を確立することを目指す.識別パターン発見技術のベースとして,記号値・数値の混在データから近似的な事前処理(離散化・記号化)なしに識別パターンを厳密に発見するアルゴリズムであるECHO法を採用する.
|
Outline of Final Research Achievements |
In this study, we aimed to establish discriminative pattern mining techniques as a foundation of human-centric machine learning. Specifically, we started with ECHO, a discriminative pattern mining method previously proposed by this study's principal investigator, and evolved it methodologically. We also examined the usefulness of ECHO mainly in medical domains. In this study, we achieved a certain progress in each of four sub-goals: evaluating the interpretability of ECHO-produced patterns in medical domains, development of a monitoring tool for ECHO, shared-memory parallelization of ECHO, and development of an associative classifier that uses ECHO-produced patterns. We also confirmed the importance of transparency in machine learning through an extensive survey of explainable AI.
|
Academic Significance and Societal Importance of the Research Achievements |
近年の人工知能の中核を成す機械学習技術ではその不透明性,近似的な解,ハイパーパラメータチューニングの必要性等,人間側が機械学習手法を確実・容易に理解・応用する上で障害となる問題点が残されている.本研究ではこれらの問題点をあらかじめ避けられる識別パターン発見手法であるECHO法に注目し,その方法論上の改良・発展および有用性の検証を行った.時間的な制約により,4つの副目標全てを完全に達成できた訳ではないが,これらの副目標の重要性が改めて確認でき,この方向で研究を進めていく意義を示すことができた.また,本研究を通じ,学術界・産業界で注目される説明可能AI分野に対する貢献ができたと考えている.
|
Report
(4 results)
Research Products
(12 results)