The study of artificial intelligence to generate documents
Project/Area Number |
20K11958
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61030:Intelligent informatics-related
|
Research Institution | Osaka Metropolitan University (2022) Osaka Prefecture University (2020-2021) |
Principal Investigator |
Okada Makoto 大阪公立大学, 大学院情報学研究科, 助教 (40336813)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 深層学習 / 自然言語処理 / 文意一貫性 / 文書生成 / 意外性 / 文の意味一貫性 / 文脈破綻 / 文の自動生成 / CVAE / 文意破綻 / 注意機構 |
Outline of Research at the Start |
最近人工知能によるさまざまなデータの自動生成に注目が集まっている.言語処理分野でも文章自動生成が注目されているが,画像など他のメディアと比較すると十分な成果が得られていない現状である.本申請は人工知能の高度な言語能力の獲得を目標として,「意味一貫性」と創造的意外性としての「意味破綻」の双方をコントロール可能で,かつ人間と協調しながら自由に文を生成できる人工知能の構築を目的とする.
|
Outline of Final Research Achievements |
While attention has recently been focused on the automatic generation of data by artificial intelligence, the field of language processing has not achieved sufficient results compared to other media. I have developed a new method for estimating the emotion of dialogues in comic books, estimating paragraph boundaries in novels to explore the possibility of understanding the consistency of sentence meaning, and a method based on the Conditional Variational Autoencoder (CVAE), a kind of deep generation method, for the purpose of building an artificial intelligence that can freely generate sentences while cooperating with human beings. A method for bi-directional sentence generation from the beginning and the end of a sentence was proposed.
|
Academic Significance and Societal Importance of the Research Achievements |
人工知能によるデータの自動生成が申請の際よりも大きく注目が集まる中,他のメディアと比較すると十分な成果が得られていなかった言語処理分野において,他に先んじて人工知能の高度な言語能力の獲得を目標として「意味一貫性」と創造的意外性としての「意味破綻」の双方をコントロール可能かつ協調しながら自由に文生成可能な人工知能の構築を目的とした本研究のが深層生成手法の一種である Conditional Variational Autoencoder (CVAE) を基にした先頭と最後から双方向に文を生成する手法はなど提案できたことは一定の成果を残したといえる.
|
Report
(4 results)
Research Products
(18 results)