Efficient algorithm for sequential learning utilizing spontaneous internal activity
Project/Area Number |
20K11987
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61040:Soft computing-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松尾 直毅 九州大学, 理学研究院, 教授 (10508956)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 脳 / 学習 / 確率 / 海馬 / 記憶 / ゆらぎ / ノイズ / ニューラルネットワーク / シナプス / サンプリング / 符号化 / ギブスサンプリング / 揺らぎ / 自発活動 / 時系列 / 機械学習 |
Outline of Research at the Start |
近年ディープラーニングなど脳の構造を取り入れた機械学習が高い性能を示し始めたが、時系列学習に関する性能や効率は、まだ生物の脳のレベルには達していない。本研究では、実験と理論の統合によって、我々の脳内で観測されるような内部ダイナミクスを上手く利用する新たな時系列学習アルゴリズムの原理を解明し、柔軟かつ高精度な時系列学習アルゴリズムを実現することを目的とする。
|
Outline of Final Research Achievements |
Recent biological experiments have reported that both neurons and synapses in the brain are stochastic. They continue to show seemingly random internal dynamics even during the animal’s realization of precise and reliable responses and learnings. It has been a long-lasting question of why these random dynamics allow us reliable leanings. In this project, combining experimental and theoretical approaches, we tackled the problem. We revealed characteristic features of engram cells in the hippocampus by introducing a method that has been developed in the context of machine learning. Also, we succeeded in proposing a novel learning algorithm, named dual-sampling neural network, in which fully stochastic dynamics of neurons and synapses realize reliable learning. Numerical simulation of the network showed that the learning algorithm could reproduce various experimentally reported features of the cortical circuit.
|
Academic Significance and Societal Importance of the Research Achievements |
我々の脳は、現在研究されている機械学習や人工知能に比べて格段に低消費電力で効率的に動作することが知られており、このような効率的な学習の実現には、脳のニューロンやシナプスが持つ特性を活かした新たな学習アルゴリズムが必要だと考えられてきた。本研究成果として得られた学習アルゴリズムは、脳のニューロンやシナプスのように、素子が持つ固有の確率性を活かして学習を実現するものであり、確率的動作が正確な学習を実現可能であることを示した点で高い学術的意義を持ち、同時に、今後、このアルゴリズムの実装を進めていくことで、脳型の、超低消費電力で動作する機械学習の実現に繋がり得るという高い社会的意義を持つ。
|
Report
(4 results)
Research Products
(24 results)