Project/Area Number |
20K12008
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61050:Intelligent robotics-related
|
Research Institution | University of Fukui |
Principal Investigator |
tanaka kanji 福井大学, 学術研究院工学系部門, 准教授 (30325899)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 移動ロボット / SLAM / 故障診断 / 変化検出 / 自己位置推定 / 地図生成 / 教師生徒知識転移 / メンテナンスフリー / 自己診断型地図 / 能動視覚 / ループ閉じ込み / bag-of-words / 訓練手法 / メンテナンス / 地図診断 / 深層学習 |
Outline of Research at the Start |
移動ロボットの分野で注目されている SLAM (自己位置推定と地図生成の同時実行)技術においては、環境の動的変化に伴う、大規模地図の更新コストが新たな課題となっている。本研究では、人手に依存することなく(自律的な)、何度でも繰り返し更新することのできる(持続的な)、新しい(メンテナンスフリーの)地図システムを実現することを目的とする。
|
Outline of Final Research Achievements |
We have researched and developed a new SLAM (Simultaneous Localization and Mapping) technology equipped with self-diagnosis functions, aiming to realize intelligent mobile robots capable of long-term operations, such as robot cars and patrol robots. Specifically, our goal was to apply fault diagnosis techniques, which have been developed over many years in the field of machine learning, to the SLAM domain. We conducted research, development, and performance verification of this new real-world information processing technology.
|
Academic Significance and Societal Importance of the Research Achievements |
ロボットカーやパトロールロボットのように、長期間に渡り活動することのできる知能移動ロボットの実現に向けて、自己診断機能を有する、新しいSLAM(自己位置と地図の同時推定)技術を研究開発した。具体的には、機械学習分野において長年に渡り発展してきた故障診断技術を、SLAM分野に応用することを目的とし、新たな実世界情報処理技術の研究開発・性能検証を行った。本研究の成果は、審査の厳しい国際会議プロシーティングや雑誌に掲載された。
|