Establishment of Time Series UV Skin Damage Prediction Methods Based on Deep Learning and Deep State Space Models
Project/Area Number |
20K12058
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 62010:Life, health and medical informatics-related
|
Research Institution | Tohoku University |
Principal Investigator |
Kojima Kaname 東北大学, 東北メディカル・メガバンク機構, 講師 (10646988)
|
Co-Investigator(Kenkyū-buntansha) |
山崎 研志 東北大学, 医学系研究科, 非常勤講師 (40294798)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 深層学習 / 予防医療 / 肌ダメージ / 色素斑 / 紫外線写真 / 敵対的生成ネットワーク / pix2pix / cycleGAN / 紫外線曝露 / 皮膚がん / スマートフォン / 紫外線肌ダメージ / 状態空間モデル / 臨床画像 |
Outline of Research at the Start |
本研究では臨床画像から加齢や日光からの紫外線暴露による肌ダメージを評価するため、人工知能分野で活発に開発・研究が進められている深層学習技術をもとにした手法の開発と確率モデルである状態空間モデルと深層学習技術が統合された深層状態空間モデルによる肌ダメージの系時的変化を高精度に予測する手法の開発を行う。開発手法については皮膚科学研究者である皮膚科専門医と共に実臨床データを用いた精度検証を行うことで有効性を評価する。臨床画像に加えスマートフォンからの画像等についても検証を行い、悪性黒色腫などの皮膚疾患の予防を目的として一般利用可能な肌ダメージ評価基盤の構築を行う。
|
Outline of Final Research Achievements |
To enable daily skin damage care, we have developed a deep learning-based method that generates ultraviolet photos, which emphasize pigment spots reflecting skin damage, from color photos. In the developed method, we used color photos and ultraviolet photos simultaneously obtained by dedicated photographic equipment installed in the Dermatology Department at Tohoku University Hospital, as well as color photos taken by smartphones, as training data. For the photos obtained by the dedicated photographic equipment, we adopted the image conversion technology, pix2pix, as a training framework. For the photos taken by smartphones, another image conversion technology, cycleGAN, was adopted. As a result, the developed method can generate natural ultraviolet photos despite differences in shooting environment and device. Given that the developed method can also utilize photos taken by smartphones, it shows promising potential for contributing to preventive medicine through daily care.
|
Academic Significance and Societal Importance of the Research Achievements |
肌ダメージを反映した色素斑を強調する紫外線写真の取得は専用の撮影装置が必要である。本研究の開発手法により、こうした専用の撮影装置へのアクセスが難しい地域や、専門的な設備を持たない皮膚科診療現場においても一般的なカメラやスマートフォンにより撮影されたカラー写真から日々の肌ダメージのケアと疾患予防のための情報の取得が可能となることが期待される。加えて、こうしたスマートフォンの使用により簡便に自己の肌ダメージの認識が可能となることで、紫外線による肌への影響についての意識を高め、サンプロテクションの重要性を理解への啓蒙や日々のケアによる早期発見と予防への貢献等その社会的意義は大きなものと考えられる。
|
Report
(4 results)
Research Products
(3 results)