• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A comprehensive study of elliptic algebras and new development of noncommutative algebraic geometry

Research Project

Project/Area Number 20K14288
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2020-2021)

Principal Investigator

Kanda Ryo  大阪公立大学, 大学院理学研究科, 准教授 (50748324)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsFeigin-Odesskii楕円代数 / Artin-Schelter正則代数 / Koszul代数 / Yang-Baxter方程式 / Grothendieck圏 / R行列 / 非可換代数幾何学 / 楕円代数
Outline of Research at the Start

FeiginとOdesskiiによって導入された楕円代数は、高次元正則代数の典型例であるSklyanin代数の一般化であり、非可換代数幾何学および表現論における重要な研究対象である。本研究の目的は、このFeigin-Odesskii楕円代数の性質を代数・幾何の両面から包括的に調べるとともに、楕円代数の理論を一般化すること、そして周辺分野との関係性を見出すことである。

Outline of Final Research Achievements

The elliptic algebras introduced by Feigin and Odesskii are generalizations of (higher-dimensional) Sklyanin algebras, which are typical examples of regular algebras. In this research project, through collaborative work with Alex Chirvasitu and S. Paul Smith, we elucidated various algebraic and geometric properties of elliptic algebras. Regarding the modularity of elliptic algebras, we obtained isomorphisms between elliptic algebras by varying the parameters that define them. For the symplectic leaves determined by the Poisson structure associated with the elliptic algebras, we provided descriptions using secant varieties.

Academic Significance and Societal Importance of the Research Achievements

楕円代数は高次元正則代数の重要な例であるため、本研究課題における楕円代数の代数的性質・幾何的性質に関する結果は、未解決問題である高次元正則代数の分類に寄与するものと考えられる。また、FeiginとOdesskiiらによる楕円代数に関する原論文には、証明が与えられていない定理が多く含まれていたが、本研究課題の成果である論文において、そのいくつかに完全かつ明瞭な証明を与えることができたため、今後の楕円代数の研究の一層の推進が期待される。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (26 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (4 results) Journal Article (8 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 8 results,  Open Access: 8 results) Presentation (13 results) (of which Int'l Joint Research: 1 results,  Invited: 6 results) Remarks (1 results)

  • [Int'l Joint Research] University at Buffalo/University of Washington(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University at Buffalo/University of Washington(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] University at Buffalo/University of Washington(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Washington/University at Buffalo(米国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Projective discrete modules over profinite groups2023

    • Author(s)
      Alexandru Chirvasitu and Ryo Kanda
    • Journal Title

      J. Pure Appl. Algebra

      Volume: 227 Issue: 4 Pages: 107260-107260

    • DOI

      10.1016/j.jpaa.2022.107260

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Flat families of point schemes for connected graded algebras2023

    • Author(s)
      Alex Chirvasitu and Ryo Kanda
    • Journal Title

      Michigan Math. J.

      Volume: 73 Issue: 1 Pages: 195-208

    • DOI

      10.1307/mmj/20205939

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Elliptic R-matrices and Feigin and Odesskii's elliptic algebras2023

    • Author(s)
      Alex Chirvasitu, Ryo Kanda, and S. Paul Smith
    • Journal Title

      Selecta Math. (N.S.)

      Volume: 29 Issue: 2 Pages: 31-31

    • DOI

      10.1007/s00029-023-00827-0

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Flat cotorsion modules over Noether algebras2022

    • Author(s)
      Ryo Kanda and Tsutomu Nakamura
    • Journal Title

      Doc. Math.

      Volume: 27 Pages: 1101-1167

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Integrality of noetherian Grothendieck categories2022

    • Author(s)
      Ryo Kanda
    • Journal Title

      J. Algebra

      Volume: 592 Pages: 233-299

    • DOI

      10.1016/j.jalgebra.2021.10.036

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Extension groups between atoms in abelian categories2021

    • Author(s)
      Ryo Kanda
    • Journal Title

      J. Pure Appl. Algebra

      Volume: 225 Issue: 9 Pages: 106669-106669

    • DOI

      10.1016/j.jpaa.2021.106669

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Feigin and Odesskii's elliptic algebras2021

    • Author(s)
      Alex Chirvasitu, Ryo Kanda, and S. Paul Smith
    • Journal Title

      J. Algebra

      Volume: 581 Pages: 173-225

    • DOI

      10.1016/j.jalgebra.2021.04.009

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings2021

    • Author(s)
      Alex Chirvasitu, Ryo Kanda, and S. Paul Smith
    • Journal Title

      Forum Math. Sigma

      Volume: 9

    • DOI

      10.1017/fms.2020.60

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Feigin-Odesskii's elliptic algebras2024

    • Author(s)
      Ryo Kanda
    • Organizer
      神楽坂代数セミナー, 東京理科大学, 日本
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Elliptic algebras2023

    • Author(s)
      Ryo Kanda
    • Organizer
      The 9th China-Japan-Korea International Conference on Ring and Module Theory, Incheon National University, 韓国
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Feigin and Odesskii's elliptic algebras2023

    • Author(s)
      Ryo Kanda
    • Organizer
      城崎代数幾何学シンポジウム2023, 城崎国際アートセンター, 日本
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Flat cotorsion modules and pure-injective modules2023

    • Author(s)
      Ryo Kanda
    • Organizer
      環論表現論ワークショップ in 信州, 信州大学, 日本
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Projective objects in the category of discrete modules over a profinite group2022

    • Author(s)
      Ryo Kanda
    • Organizer
      第33回可換環論セミナー, Zoom, オンライン
    • Related Report
      2022 Research-status Report
  • [Presentation] Projective objects in the category of discrete modules over a profinite group2022

    • Author(s)
      Ryo Kanda
    • Organizer
      第54回環論および表現論シンポジウム, 埼玉大学, 日本
    • Related Report
      2022 Research-status Report
  • [Presentation] Exactness of direct products2022

    • Author(s)
      Ryo Kanda
    • Organizer
      可換環論の新しい融合セミナー II, 大阪市立大学, 日本
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Flat cotorsion modules over Noether algebras2021

    • Author(s)
      Ryo Kanda
    • Organizer
      東京名古屋代数セミナー, Zoom, オンライン
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Elliptic algebras and twisted homogeneous coordinate rings2021

    • Author(s)
      Ryo Kanda
    • Organizer
      オンライン可換環論セミナー2021, Zoom, オンライン
    • Related Report
      2021 Research-status Report
  • [Presentation] Structure theorem for flat cotorsion modules over Noether algebras2021

    • Author(s)
      Ryo Kanda
    • Organizer
      第53回環論および表現論シンポジウム, Zoom, オンライン
    • Related Report
      2021 Research-status Report
  • [Presentation] Flat cotorsion modules over Noether algebras and elementary duality of Ziegler spectra2021

    • Author(s)
      Ryo Kanda
    • Organizer
      第42回可換環論シンポジウム, Zoom, オンライン
    • Related Report
      2021 Research-status Report
  • [Presentation] Extension groups between atoms in abelian categories2021

    • Author(s)
      神田 遼
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Feigin-Odesskii's elliptic algebras2020

    • Author(s)
      神田 遼
    • Organizer
      京都表現論セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Remarks] Ryo Kanda

    • URL

      https://ryokanda.net

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report 2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi