Project/Area Number |
20K14310
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Hiroshima University |
Principal Investigator |
Okuda Takayuki 広島大学, 先進理工系科学研究科(理), 准教授 (40725131)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 等質空間 / 対称空間 / 部分多様体 / 粗幾何学 / 不連続群 / 符号理論 / リーマン幾何 / 全測地的部分多様体 / 微分幾何 / リー代数 |
Outline of Research at the Start |
各点で点対称と呼ばれる変換が定義されているリーマン多様体をリーマン対称空間という. リーマン対称空間は球面やグラスマン多様体, 双曲空間などを例として含んでおり, 微分幾何学において重要な研究対象である. また全測地的部分多様体とは測地線の概念を一般化したものである. 「真直ぐなものを考える」という意味で, 全測地的部分多様体は最も基本的な部分多様体のクラスの一つである.本研究課題ではディンキン指数と呼ばれる不変量を定義し, 応用することによりリーマン対称空間内の部分多様体の分類問題に取り組むものである.
|
Outline of Final Research Achievements |
Through this research, we successfully defined a natural number called the split Dynkin index for all totally geodesic embeddings between Riemannian symmetric spaces using the theory of Lie algebras. This correspondence generalizes the concept known as the Dynkin index for Lie algebra homomorphisms between complex simple Lie algebras and is considered an important concept for understanding the relationships between Riemannian symmetric spaces. We also developed a method to calculate the corresponding split Dynkin index for each embedding using the concept of complexification. Additionally, during the course of this research, the relationship between discontinuous groups on homogeneous spaces and coarse geometry has been elucidated. These results are currently being prepared for submission as a journal paper.
|
Academic Significance and Societal Importance of the Research Achievements |
リーマン対称空間と呼ばれる性質を持つ空間は幾何学において基本的かつ重要な研究対象である. 本研究はそれらの間の関係性を理解するためのものである. 本研究においてはリーマン対称空間の間に全測地的はめ込みという関係性が与えられたとき, それをある尺度において自然数で評価する手法を開発できた. この手法を用いて今後リーマン対称空間の関係性をより深く理解することが可能となった.
|