• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quantum dynamics generated by non-self-adjoint hamiltonians and its applications

Research Project

Project/Area Number 20K14335
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKyushu Sangyo University (2021-2023)
Daiichi University, College of Pharmaceutical Sciences (2020)

Principal Investigator

Inoue Hiroshi  九州産業大学, 経済学部, 講師 (60791027)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords非自己共役ハミルトニアン / 一般化リース系 / ギブス状態 / 非有界作用素 / 双準直交系 / クライン空間 / observable algebra / 冨田・竹崎理論 / 非有界冨田・竹崎理論
Outline of Research at the Start

本研究の目的は、双準直交系から定義される非自己共役ハミルトニアンから生成される量子力学系の性質を調べることである。
本研究をすすめる上で、非自己共役ハミルトニアンから生成される量子力学系をどのように定義することが自然であるのか、さらに、この量子力学系と通常の自己共役ハミルトニアンから生成される量子力学系との違いを精査し、最も自然で最適な仮定のもとでこの量子力学系の性質を調べる。
また、双準直交系から定義される非自己共役ハミルトニアンを、あるクライン空間上の自己共役作用素として捉え、クライン空間上で量子力学系の性質を調べる。

Outline of Final Research Achievements

In this study, we clarified that the concept of a generalized Riesz system and a closed operator defined by a tensor product of an element sequence in a Hilbert space and an orthonormal basis play an important role in the study of the construction of a non-self-adjoint Hamiltonian using unbounded operators, and were able to investigate the properties of a quantum mechanical system generated from a non-self-adjoint Hamiltonian under the most natural and optimal assumptions.

Academic Significance and Societal Importance of the Research Achievements

近年、様々な量子力学に関わる物理モデル(例えば、一般化された調和振動子、スワンソンモデル)や、信号解析・画像解析で用いられるフレームの理論は、双準直交系から定義された非自己共役ハミルトニアンから構成されている。このことから、多くの研究者が数学的な立場、物理への応用からこの研究を盛んに行っている。しかし、これらの研究は、有界作用素に基づいた研究である。本研究では、これらの理論を非有界作用素に拡張することにより、非有界作用素から構成される非自己共役ハミルトニアンと量子力学系の関係性は明らかにした。以上より、数学・量子力学の両分野にも理論・応用の面から意義がある成果である。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (22 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (3 results) Journal Article (10 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 9 results,  Open Access: 2 results) Presentation (9 results) (of which Int'l Joint Research: 3 results,  Invited: 5 results)

  • [Int'l Joint Research] Palermo University(イタリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Palermo University(イタリア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Palermo University(イタリア)

    • Related Report
      2020 Research-status Report
  • [Journal Article] AN UNBOUNDED GENERALIZATION OF TOMITA's OBSERVABLE ALGEBRAS II2023

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      Reports on Mathematical Physics

      Volume: 91 Issue: 2 Pages: 251-276

    • DOI

      10.1016/s0034-4877(23)00028-9

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An unbounded generalization of tomita's observable algebras III2023

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      Reports on Mathematical Physics

      Volume: 92 Issue: 2 Pages: 243-258

    • DOI

      10.1016/s0034-4877(23)00072-1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Introduction to unbounded generalizations of Tomita’s observable algebras2023

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      Bollettino di Matematica pura e applicata

      Volume: 10 Pages: 41-61

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Polar Decomposition and Functional Calculus for Generalized Tomita’s Observables2023

    • Author(s)
      Inoue Hiroshi、Trapani Camillo
    • Journal Title

      Complex Analysis and Operator Theory

      Volume: 18(9) Issue: 1 Pages: 1-26

    • DOI

      10.1007/s11785-023-01449-2

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] An Unbounded Generalization of Tomita's Observable Algebras2022

    • Author(s)
      Atsushi Inoue and Hiroshi Inoue
    • Journal Title

      Reports on Mathematical Physics

      Volume: 89(2) Issue: 2 Pages: 153-184

    • DOI

      10.1016/s0034-4877(22)00021-0

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces2021

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      Journal of Mathematical Physics

      Volume: 62 Issue: 11 Pages: 112101-112101

    • DOI

      10.1063/5.0061797

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-self adjoint Hamiltonian and its applications2021

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      RIMS共同研究(公開型)報告集 数理解析研究所講究録

      Volume: 2201 Pages: 17-31

    • NAID

      120007170967

    • Related Report
      2021 Research-status Report
  • [Journal Article] Non-self-adjoint Hamiltonians defined by sesquilinear forms and their physical applications2020

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      Journal of Mathematical Physics

      Volume: 61 Issue: 5 Pages: 053504-053504

    • DOI

      10.1063/1.5135946

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Order Structures of (D,E)-Quasi-Bases and Constructing Operators for Generalized Riesz Systems2020

    • Author(s)
      Inoue Hiroshi
    • Journal Title

      Reports on Mathematical Physics

      Volume: 86 Issue: 1 Pages: 39-61

    • DOI

      10.1016/s0034-4877(20)30056-2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Gibbs States, Algebraic Dynamics and Generalized Riesz Systems2020

    • Author(s)
      Bagarello F.、Inoue H.、Trapani C.
    • Journal Title

      Complex Analysis and Operator Theory

      Volume: 14 Issue: 8 Pages: 1-25

    • DOI

      10.1007/s11785-020-01036-9

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Structure theory and decomposition theory of unbounded observable algebras2023

    • Author(s)
      Inoue Hiroshi
    • Organizer
      International Workshop on Functional Analysis and Quantum Physics: interplay, challenges, perspectives
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to unbounded observable algebras2023

    • Author(s)
      Inoue Hiroshi
    • Organizer
      Algebras in Analysis
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Unbounded Tomita's observable algebras in Hilbert space2023

    • Author(s)
      井上 寛
    • Organizer
      九大 作用素環論、エルゴード理論セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Relationships between O*-algebras and unbounded Tomita’s observable algebras2023

    • Author(s)
      井上 寛
    • Organizer
      第12回信州関数解析シンポジウム
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] An unbounded generalization of Tomita's observable algebras II2023

    • Author(s)
      井上 寛
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] An unbounded generalization of Tomita's observable algebras2022

    • Author(s)
      井上 寛
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] An unbounded generalization of Tomita's observable algebras2022

    • Author(s)
      Hiroshi Inoue
    • Organizer
      nternational Conference on Topological Algebras and Their Applications 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非自己共役ハミルトニアンとその周辺2021

    • Author(s)
      井上 寛
    • Organizer
      2020 RIMS共同研究 量子場の数理とその周辺
    • Related Report
      2020 Research-status Report
  • [Presentation] 双準直交系から構成される非自己共 役ハミルトニアンと準線形形式に関 する研究2020

    • Author(s)
      井上 寛
    • Organizer
      日本数学会2020年度秋季総合分科会, 熊本大学(online)
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi