Project/Area Number |
20K16705
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Yokohama City University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 核医学 / AI / 人工知能 / 深層学習 / イオフルパン / 脳核医学 / 123I-イオフルパン / 新型コロナウイルス肺炎 / COVID-19 / CO-RADS / deep learning / 機械学習 / 123I-ioflupane |
Outline of Research at the Start |
脳核医学検査は脳神経疾患の診断に重要であるが、撮像時間が長く、患者の身体的、精神的負担が大きい。患者負担の軽減、安全性の確保、検査効率の観点からも脳核医学検査時間の短縮は重要な課題である。 本研究ではドパミントランスポータシンチグラフィについてファントム試験および臨床症例を用いた後ろ向き観察研究を行う。短時間撮像画像と標準時間撮像画像を用い、深層学習モデルを構築し、生成された仮想画像と標準時間撮像画像を比較する。本研究により診断に十分な仮想画像が得られれば、その他の核医学検査への応用も考慮され、核医学検査全体の患者負担の軽減や検査効率の改善をもたらす可能性がある。
|
Outline of Final Research Achievements |
In this study, we investigated the reduction of imaging time using artificial intelligence by utilizing 207 cases of 123I-ioflupane previously imaged at our hospital. Original images and images with one-fifth of the imaging time were output from the workstation attached to the imaging equipment, and an artificial intelligence model was constructed. U-Net and its derivative models were employed to build the AI model. The generated AI images and the original images were compared and evaluated using quantitative values (PSNR; Peak Signal to Noise Ratio, SSIM; Structural Similarity) and a reading experiment. As a result, the agreement rate between the quantitative values and the reading experiment results with the original images showed favorable outcomes.
|
Academic Significance and Societal Importance of the Research Achievements |
123I-ioflupaneは認知症診断に重要な役割を担っており、臨床的・社会的に重要であるが、撮像時間も長く、患者負担も大きい。また、検査効率や経済性の観点からも脳核医学検査の時間短縮は取り組むべき課題と考えられた。本研究では人工知能を用いた画質改善技術を開発し、撮像時間が1/5となる5分間の画像を用いて、オリジナル画像と良好な読影結果の一致率を示すことができた。この結果により、さらなる研究の後、123I-ioflupaneの撮像時間短縮により患者負担の軽減のみならず検査室のスループットの向上にも繋がると考えられた。また、本技術は他の核医学検査にも応用可能であり、その意義は大きいと思われた。
|